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Abstract
The mixed convection of a two-dimensional, unsteady boundary-layer flow of a viscous incompressible fluid past a symmetric wedge has
been studied. The resulting system of non-linear ordinary coupled differential equations has been solved analytically for small time and
numerically by three individual competent methodologies; namely (a) Series solutions method for small time, (b) Asymptotic solutions for
large time and (c) Implicit finite difference method (FDM) together with the Keller-box elimination scheme. Numerical results obtained for
skin-friction coefficient, heat transfer rate, streamlines and isotherms with the effect of dissimilar leading parameters such as different
time , the exponent m, mixed convection parameter  and Prandtl number Pr.

Keywords: Mixed convection flow, Semi-infinite symmetric wedge and unsteady flow.

Nomenclature
f Dimensionless stream function

U  Potential flow velocity

g Dimensionless temperature function )(xue  Velocity of the potential flow
F Dimensionless stream function f expressed

in terms of 
vu ,  Velocity components along the yx,

axes, respectively
G Dimensionless temperature function g

expressed in terms of 
yx,  Cartesian coordinate measured along

the surface of the wedge and normal to
it respectively

Cf Skin-friction coefficient  Greek symbols
Cp Specific heat at constant pressure   Thermal diffusivity
k Thermal conductivity of the fluid  Constant defining the included angle

 of the wedge
l Characteristic length   kinematic viscosity
m Exponent  Dynamic viscosity
Grl Grashof number   Fluid density
Pr Prandtl number   ratio between Gr and Re2

Rel Reynolds number  Transformed spatial variable
Nu Local Nusselt number  Stream function
 Temperature of the fluid   Dimensionless time
Tw Surface temperature of the wedge  Subscripts & Superscripts
Tr Reference temperature w surface conditions

T Ambient temperature ∞ ambient temperature conditions

t Time  differentiation with respect to 

I. Introduction

Convective heat transfer in unsteady flows are of
fundamental importance over a stationary for the thermal
design of various types of industrial equipments such as
aircraft response to atmospheric gusts, in aerofoil lift
hysteretic at the stall, in flutter phenomena involving wing,
spin stabilized missiles, canisters of nuclear waste disposal,
nuclear reactor cooling system and geothermal reservoirs,
panel and staling flutter as well as in the prediction of flow
over helicopter rotor blades and through turbo-machinery
blade cascades. Environmental and industrial applications
including ground water pollution are studied along the
symmetric semi-infinite wedge. The steady Falkner-Skan is

one of the recognized problems and has been considered by
many investigators; for example, Leal [1], Schlichting et al.
[2] and Gersten et al. [3]. In recent years, fluctuating
conditions of motion and heating of bodies in fluids have
been increasingly essential in certain applications within
some engineering fields of aerodynamics and
hydrodynamics. There is a large body of literature on
unsteady, forced convection, boundary-layer flows past
bodies of different geometries that give rise to the Falkner-
Skan equations, mentioned in Telionis [4], Riley [5], and
Ludlow et al. [6]. However, fewer studies have been
concerned with the heat transfer aspects, see, Pop [7]. The
problem reduces to an uncoupled, laminar boundary layer-



Sidhartha Bhowmick, M.K. Jaman and M.Z.I. Khan48

x

flow and the fluid velocity field is unaffected by any
temperature changes when the fluid is assumed to have
constant properties. However, the problem becomes coupled
when the thermo physical fluid properties depend on the
temperature, so that the fluid velocity is also a function of
time.

Studies of the skin-friction and heat transfer in two-
dimensional laminar flow over wedge-shaped bodies can
accurately be calculated by solving the boundary layer
differential equations. The momentum boundary layer
equation for Falkner-Skan flow from a wedge, with
potential flow velocity m

e xxu )( , was first deduced by
Falkner and Skan [8]. Afterward Hartree [9] investigated the
similarity solutions of the flow in details. He represented the
solutions in terms of velocity distribution for different
values of pressure gradient parameter. For flow over an
arbitrary body shape with known pressure or velocity
distribution where there exists no similarity, the skin-friction
and heat transfer are conventionally found by an
approximate method, either the integral method or the
equivalent wedge flow approximation. Both of these two
methods yield sufficiently accurate results for most
engineering applications. Smith [10] initiated the unsteady,
forced convection, boundary-layer flow past a semi-infinite
wedge and this problem was subsequently solved
numerically by Nanbu [11] using the method proposed by
Hall [12] and in recent times that was modified by Harris et
al. [13]. This method solves the untransformed equations
directly using an iterative procedure and by implicit finite
difference method, which is well documented and widely
used by Keller and Cebeci [14] for unsteady boundary-
layers. Watkins [15] has also solved this problem
numerically following a second order; he has also studied
the unsteady heat transfer aspects of the semi-infinite wedge
started impulsively from rest to include solutions of the
energy equation. The present work is concerned with the
problem of heat transfer for an impulsively started Falkner-
Skan flow due to Harris et al. [13].The majority of relevant
cases are considered related to the acute semi-infinite wedge
problem.

The situation considered here is that of heat transfer in the
unsteady, thermal boundary-layer associated with the mixed
convection (momentum) boundary-layer flow resulting from
a transient Falkner-Skan problem with exponent m. This
situation has physical relevance when 10  m and, for
such cases; the flow is that of an incompressible fluid past a
sharp, semi-infinite wedge of included
angle )1/(2 mm . In this article, the concentration has
been given to a study of the mixed convection flow of an
unsteady, two-dimensional, viscous flow of an
incompressible fluid past a symmetrical, sharp wedge with
variable surface temperature, and a distributed heat source
of the form )( TTg . In addition, at 0t , the
thermal boundary-layer is produced by the simultaneous
sudden imposition of a constant temperature )(  TTw

over the surface. Using appropriate transformations, the
governing equations are reduced to non-linear partial

differential equations for both the steady mean flow and
unsteady flow, solutions of which are obtained numerically
employing the finite difference method together with Keller-
box elimination scheme. The initial development of the
thermal boundary-layer has satisfactorily been represented
by analytical solution for small times. Physically, at this
initial stage of the transient process, diffusion dominates
convection, which is affected only weakly by the velocity
components close to the surface. The asymptotic solution
for large time approaches steady state and is given by the
Falkner-Skan equation. The very detailed numerical solution
is presented for the whole transient from the initial
( 0 ) unsteady to the final (  ) steady state by
using a modification of the step-by-step method, in
combination with a finite-difference method. Effects of
pertinent parameters such as varying the pressure gradient
m, the Prandtl number Pr and mixed convection parameter
 , on the shearing stress and the rate of heat transfer in
terms of skin-friction and Nusselt number respectively are
shown in figures (2) and (3). Finally the flow pattern in
terms of streamlines and isotherms has also been shown
with varying the time  for the effects of fixed

7.0Pr,5.0 m and 5.0 in figures (4) and (5).

II. Mathematical Formalism

We consider the unsteady two-dimensional laminar mixed
convection flow of a viscous incompressible fluid past a
symmetrical, sharp wedge with a distributed heat source of
the form )( TTg . The inviscid flow over the wedge
develops instantaneously and its velocity is given by

m
e LxUxu )/()(  , for 1m (1)

where L is a characteristic length and m is pressure gradient
related to the included angle  by m = /(2-). It is clear
that for negative values of m the solution becomes singular
at x = 0, whilst for positive m the solution can be defined
for all values of x , and this leads to a general difference
between the solutions for the case of 0m and 0m . It
is assumed that the variable surface temperature of the
wedge is )(  TTw , where the ambient temperature of the

fluid is assumed to be T and  being the temperature of
the fluid in the boundary layer. The physical configurations
for this flow are shown in Fig. 1.

v
u

y

T wT
 U

Fig. 1. Physical model and coordinate system
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The flow is governed by the following boundary layer
equations:
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where ),( vu are the velocity components along the
),( yx axes,  is the kinematic viscosity,  is the density

of the fluid, k is the thermal conductivity, Cp is the specific
heat at constant pressure and  is the constant viscosity of
the fluid in the boundary layer region.

The boundary conditions are to be satisfied for the present
problems are
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(5a)

 yasTxuu e 0),( . (5b)
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The velocity over the wedge is now given by

1,)(  mforxxu m
e

(7)

and, sufficiently far downstream from the apex, the
governing equations (2)-(4) can be written as
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In the above equations,  is the mixed convection
parameter and defined as the ratio of Gr and Re2, where

Prandtl’s number, Pr =
k
C p

;

Grashof number, GrL = 2

3)(


 LTTg r  ; and Reynolds

number, ReL =


LU .

The boundary conditions then turn to

0,0,0 12   yatxvu m (11a)

 yasxxuu m
e 0,)( 

for 1,0  mt .

(11b)

The number of independent variables in the governing
equations (8)-(10) can be reduced from three to two by
introducing the dimensionless, reduced stream function

),( F and temperature function ),( G as
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where  is a non-dimensional similarity variable and  is
the stream function for unsteady flow, which is defined in

the usual way, namely
y

u
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. Thus the

set of equations (9)-(10) are transformed to
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The appropriate boundary conditions to be satisfied by (13)
and (14) are
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Here prime denotes the differentiation of the functions with
respect to .
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Now to find the numerical solutions we can get the easiest
form by using the transformation   e1 from the
equations (13) and (14)
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The corresponding boundary conditions (15) becomes
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The physical quantities that are important from application
point of view are the surface shear stress and the surface rate
of heat transfer, which can be measured in terms of the skin
friction coefficient, 2))((/)( xuxC ewf  and the local

Nusselt number, )(/)(  TTkxxqN wfwu , where,

0)/()(  yw yux  is the skin friction along the

surface, 0)/()(  yfw yTkxq is the surface heat
flux, and kf is the thermal conductivity of the fluid. By
introducing the dimensionless variables (6) and the
transformation (12), the skin friction coefficient,

2/1RexfC and the local Nusselt number, 2/1RexNu
defined by
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Numerical values of ),0( F  and ),0( G from the
solutions of the governing equations (13)-(15) we obtain the
values of the skin friction coefficient and the local Nusselt
number from the relations (19-20) as mentioned above.

III. Analytical and Numerical Analysis

Now we employed three numerical methods; namely (i) 3-
term Series solutions for small time, (ii) Asymptotic
solutions for large time and (iii) Implicit finite difference
method (FDM) together with the Keller-box scheme for all
time, which are described below.

Analytical and Series solutions for small time  <<1
At the present situation we must represent equations (16)
and (17) in a form which is much more convenient for
analysis at small times. The transforming equations become
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At small values of  (<<1), it can easily verify that the
solutions of equations (21) and (22) have the following
forms:
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Substituting the above two expressions into equations (21)
and (22) and picking up the terms up to the order O( 2), we
get the following three sets of equations with boundary
conditions:
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Solving the equations (26)-(31) analytically and the
equations (32)-(34) numerically we get the skin friction
coefficient and the local Nussult number as the form:

2/1RexfC =   )]0()0()0([2 2
2

10
2/1 FFF   (35)

2/1RexNu =   )]0()0()0([2 2
2

10
2/1 GGG   (36)

After some simplification when =0, the small time
solutions for the skin friction coefficient 2/1RexfC and the

local Nusselt number 2/1RexNu can be written as follows:
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Asymptotic solution for large time 
Here the method of asymptotic expansion is used to solve
the governing equations. When the transport of energy
becomes steady as  , then the governing equations
(16)-(17) and respective boundary condition becomes,
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For large time  we can consider,

  )()()(),( 2
2

1
1

0  FFFF (42)

  )()()(),( 2
2

1
1

0  GGGG (43)

Substituting the above two expressions into equations (39)-
(40) and picking up the terms up to the order O( -2), we get
three similar set of equations as described above in

analytical and series solution with respective boundary
conditions.
Numerically solving that equations gives the skin friction
coefficient and the local Nusselt number as:

2/1RexfC =   )]0()0()0([2 2
2

1
1

0
2/1 FFF    (44)

2/1RexNu =   )]0()0()0([2 2
2

1
1

0
2/1 GGG    (45)

Implicit finite difference method (FDM) for all time 
We integrate the locally non-similar partial differential
equations (16)-(17) by using an well established implicit
finite difference method. To begin with, the partial
differential equations (16)-(17) are first converted into a
system of first order equations in y. Denoting the mesh
points in the (x, y) plane by xi and yj, where i=1, 2, 3, …, M
and j=1, 2, 3, …, N, central difference approximations are
made such that the equations involving x explicitly are
centered at (xi-1/2, yj-1/2) and the remainder at (xi, yj-1/2),
where yj-1/2=(yj+yj-1)/2, etc. This results in a set of nonlinear
difference equations for the unknowns at xi in terms of their
values at xi-1. These equations are then linearised by the
Newton’s quasilinearization technique and are solved using
a block-tridiagonal algorithm. Now to initiate the process at
x=0 and use the Keller-box method to solve the governing
ordinary differential equations. For any given value of x, the
iterative procedure is stopped when the difference in
computing the velocity and the temperature in the next

iteration is less than 10-5, i.e. when 510if , where the

superscript denotes the number iterations. Throughout the
computations a non-uniform grid has been used by setting yj
= sinh(j-1)/a with j=1, 2, …, 301 and a=125.
IV. Results and Discussion
In this article we present the results of calculations of the
skin friction and rate of heat transfer in terms of Nusselt
number for the problem of laminar mixed convection two-
dimensional boundary-layer flow past a symmetric semi-
infinite wedge with variable temperature. Implicit finite
difference method being employed in finding the solutions
of the equations (16)-(17) that govern the flow subject to the
boundary conditions (18).
In absence of the effect of mixed convection parameter i.e
when =0, these equations were solved by Harris et al. [13].
Table 1 contains the present solutions for comparisons of
the Skin-friction Cf and the Nusselt number Nu for small
time that obtained by Harris et al. [13].

Table. 1. Numerical values of Cf and Nu for different values of small time  for Pr = 1.0and m = 0.2

Harris et al. [13] Present result
 Cf Nu  Cf Nu

0.01 5.65797 5.64360 0.01000 5.66886 5.64525
0.1 1.83491 1.78946 0.10017 1.83693 1.76140
0.2 1.33334 1.26902 0.20134 1.33189 1.22357
0.4 0.99341 0.90234 0.39996 0.99548 0.83937
1.0 0.72370 0.57925 0.99806 0.72665 0.46370
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Table. 2. Numerical values of the skin-friction coefficient and the local Nusselt number obtain by different methods
for different values of  while Pr = 0.7, =0.25 and m = 0.0 (for flat plate), 0.5 (wedge angle 1200).

Pr = 0.7
=0.25

2/1Re xfC 2/1RexNu

 m=0.0 m=0.5 m=0.0 m=0.5

FDM       AN & AS FDM      AN & AS FDM AN & AS FDM     AN & AS

0.10017

0.30452

0.52110

0.75858

1.02652

100.16

201.71

300.92
448.92

548.31

1.80291

1.00060
0.75900

0.63075

0.54809

0.32187

0.32570

0.32731

0.32855

0.32906

1.78610an

1.02438an

0.78309an

0.64903an

0.55794an

0.33122as

0.33163as

0.33177as

0.33186as

0.33189as

1.95493

1.25047

1.07166

0.99176

0.94903

0.89909

0.89940

0.89950

0.89957

0.89959

1.91241an

1.24207an

1.06433an

0.98370an

0.94113an

0.89948as

0.89959as

0.89964as

0.89966as

0.89967as

1.50910

0.83869

0.63750

0.53110

0.46277

0.28303

0.28668

0.28820

0.28938

0.28985

1.49470an

0.85725an

0.65533an

0.54314an

0.46691an

0.29212as

0.29248as

0.29260as

0.29268as

0.29271as

1.52753

0.86929

0.67731

0.57953

0.51980

0.41433

0.41525

0.41555

0.41576

0.41584

1.50784an

0.88069an

0.68673an

0.58202an

0.51343an

0.41696as

0.41717as

0.41724as

0.41728as

0.41730as

In Table 2 ‘AN’ means analytical solution for small time and ‘AS’ means asymptotic solution for large time.

The numerical results of 2/1RexfC and 2/1RexNu , for
Prandtl number Pr = 0.7,  = 0.25 and for small and large
time  with different values of m, have been compared with
the values of same physical quantities obtained by other
methods are shown in the above Table 2.
The variations of skin-friction coefficient and local Nusselt
number for different values of mixed convection parameter
 = 0.0, 0.25, 0.5, 0.75, 1.0 obtained by the aforementioned
methods are drawn in Fig. 2 for constant values of Pr = 0.7
(which represents air at 200C and exponent m = 1.0
(stagnation point). In Fig. 3 skin-friction coefficient and
local Nusselt number are plotted over a large Prandtl
number Pr=50.0 with exponent m = 0.5 (wedge angle 1200)
and different mixed convection parameter as mentioned
above. Considering all factors, we conclude from figures 2
to 3 that the agreement is as good as one may hope for  the
cases due to analytical solutions, the asymptotic solutions
and the finite difference solutions.
Effect of mixed convection parameter  on Falkner-Skan
boundary-layer flow along the wedge has been studied
theoretically and the following conclusions may be drawn
from the present investigation. The skin-friction coefficient

2/1RexfC and local Nusselt number 2/1RexNu both
decreases for small time increases and for the values of large
time they become steady. It reveals from figures 2 and 3 that
increases in the value of the mixed convection parameter

leads to the decrease of the skin-friction coefficient and
Nussult number.
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Fig. 2. (a) Skin friction coefficient and (b) local Nusselt
number, for small and large time for  = 0.0, 0.25, 0.5, 0.75,
1.0 at Pr = 0.7 and m = 1.0
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Fig. 3. (a) Skin friction coefficient and (b) local Nusselt
number, for small and large time for  = 0.0, 0.25, 0.5, 0.75,
1.0 at Pr = 50.0 and m = 0.5

Now we see the effects of pertinent parameters controlling
the present problem on the flow pattern and the temperature
distribution in terms of the streamlines and isotherms.
Following relations are considered to measure the values of
the streamlines and isotherms at different times in x-y plane:

  ),(2 2
1

2
1

 Fx
m

 and

),(12  Gx m ,where

  yx
m

2
1

2
1

2 


 

(46)

We develop the figures for the fixed values of Pr = 0.7, m =
0.5 and  = 0.5 and observed the effect of time. The
physical implications of different profiles for streamlines
and isotherms are clearly illustrated in Fig. 4 and Fig. 5 for
the values of  which are equal to 5 and 0.2 respectively. For
 = 0.2 the momentum boundary-layer becomes thinner and
we have a weaker flow; on the other hand, for  = 5 the
momentum boundary-layer becomes higher and we have a
stronger flow at the down stream region. For different 
isotherm shows significant changes. The fluid temperature is
highest near the lower boundary and decreasing to the upper
boundary and this is the region of lowest viscosity.
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Fig. 4. (a) Streamlines and (b) Isotherms for =0.2 at
5.0,5.0,7.0Pr  m
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Fig. 5. (a) Streamlines and (b) Isotherms for =5 at
5.0,5.0,7.0Pr  m

V. Conclusion
The analysis carried out here is concerned with two-
dimensional mixed convection thermal boundary-layer flow
which is produced by the sudden increase of the surface
temperature as the motion is started. The initial development
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of these boundary-layers has satisfactorily been represented
by an analytical solution for small time and the asymptotic
solution for large time approaches steady state. From the
present investigation, following conclusions may be drawn:
1. The values of skin-friction and Nusselt number

positively decrease due to the increase of small time for
different mixed convection parameter  and Prandtl
number Pr with exponent m. And when the time
becomes large the values of skin-friction and Nusselt
number become steady.

2. The streamlines and isotherm lines are densely situated
at the down stream region. The momentum boundary-
layer grows thinner to thicker when  is increasing. The
thermal boundary-layer is thicker near the down stream
region.

The Falkner-skan one-parameter family of solutions of the
boundary-layer equations has proved to be very useful in the
interpretation of fluid flows at large Raynolds numbers. It is
hoped that the present solution method can also be applied
to other wedge and experimental data will be available in
near future to verify the results of the present study.
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