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Abstract
We present a non-equidistant sampling for the Method of Moments in the solution of Pocklington  equation  operator, to prove the reduction
of segments junctions and conductor far end discontinuities. Comparison  of  equidistant and  non-equidistant sampling  is  presented,
obtaining  E  field  over the surface of a /2 dipole.
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Introduction

For  the solution of  integral and differential equations
using  the Method of Moment  (MM), the  operator  is
divided  in N  segments,  usually  of  the  same  size,  each
one  besides  the  next,  keeping  the lineal  independence of
the  resulting matrix equation; however,  it  is known  that
when  the segments are of the same size sometimes the
interpolation produces the Runge-Borel effect, incrementing
the residual error in  both  the  conductor  surface  and
mainly  in  the  open  ends  of  the  conductor,  the  problem
is more  acute when  is  applied  to  an  integral  and
differential  equation  as  the  Pocklington  equation,  as  is
analyzed  by literature  [1-3].  In  general,  the  error  is  not
due  to  interpolation method  itself  but  the way  to  divide
the operator  using  segments  of  the  same  size. We
propose  the  division  of  operator  using  non-equidistant
segments, whose size and position is defined by the
Legendre polynomials, the results show the reduction of
interpolation error when is applied to the Pocklington
equation solution, using the Method of Moments of  a /2
dipole.  For  facility  and  as  matter  of  comparison,  in  this
paper  is  used  piecewise  sinusoidal, triangular and pulse as
basis  functions and pulse and Dirac’s delta as weight
functions, applying  them for equidistant  and  non-
equidistant  segments,  testing  the  electric  field  over  the
conductor  surface,  which theoretically should be zero,
except in the source gap.

Pocklington Equation

In  1897 Pocklington  deduced  his  equation  for  straight
structures  [4],  and  in 1965 Mei  [5], used a heuristical
procedure  to define  it  for bent wires;  for an arbitrary
shaped wire as  the one  shown  in  Fig.1,  it  is  possible  to
deduce  the  equation  using  a  formal  way,  starting  from
Maxwell equations [6] getting:
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where I
SE is the tangential incident electric field and s’ &

r’ are the arc length and position vector over the wire
surface, respectively. Considering  the  thin-wire
approximation and skin effect,  is possible  to express the

electric  field as a  linear  integration over s’. The general
Pocklington equation (1) can be used  for any possible  thin
wire geometry. The wire’s geometry  is expressed by  the
dot product s•s, where s(s) is  the unit tangential vector for
the wire’s axis and s’(s’) the same for the parallel curve
representing the current filament, shown by Fig.1:
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Fig. 1. Arbitrary shaped wire.

The geometry is also expressed by the difference between
the vectors  |r - r'| as:
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Defined  all  former  equations,  the work  is  reduced  to
find  the  vectors  representing  the  parallel  and  axis curves
for the considered wire and solve it by Method of Moments.

The  MM Solution  to  Pocklington’s Equation.

The  objective  of  the  MM  applied  to  Pocklington’s
equation is to get the current distribution Is(s) in the wire,
considering that unknown function is part of the integral
operator. The MM formulation  is  used  to  get  a  numerical
solution of (1) establishing that the unknown  function must
be expressed in terms of a linear combination of linearly
independent  functions in(s’) called basis functions:
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cn are the unknown coefficients to be determined and N the
number of basis function. Substituting (4) into (1) results an
equation with N unknowns:
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for a consistent equation system, is necessary to find N
linearly independent equations, obtained by taking the  inner
product of (5) with other set of N chosen linearly
independent functions wm(s) named weighting function:
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using inner product definition, (6) can be written as:
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then the system in matricial form is:
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[Zmn](cn)=vm)

where the elements Zmn are obtained from:
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and the elements vm are:
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The cn are  the  system’s  unknowns.  The matrices  of  (8)
are  known  as  impedance  matrix  [Zmn],  current matrix
(cn), and voltage matrix ( Vm). The solution for (8) is:
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where the inverse matrix [Zmn]-1 is obtained by a numerical
technique [6].

To  solve (11) is necessary  to  define  base  and  weight
functions;  as  it  is  known  both  functions  are selected

arbitrarily.  The most widely used subdomain functions have
been a subject of research, some discussion of this may be
found in [1,7],  but the more often used are Dirac´s delta,
pulse, triangle, piecewise sinusoidal and trigonometric
functions. For facility and as matter of comparison, in this
paper is used  piecewise  sinusoidal,  triangular  and  pulse
as  basis  functions  and  pulse  and Dirac’s delta as weight
functions, applying  them for equidistant and non-
equidistant segments, testing the electric field over  the
conductor surface, which theoretically should be zero,
except in the source gap.

Legendre Polynomials for non-equidistant Segments

To obtain equidistant segments implies only to divide  by N
times  the  length  of  the  conductor,  for  the  non-
equidistant  division we  use  the  roots  of  the Legendre
Polynomials to define position and length of segments.

The differential equation of Legendre is given by:
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To solve (12) is used the classical method of series, getting
two solutions, both linearly independent:
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convergence of both series  is  in  the range |x| <1. When n
is an even positive number y1(x) is reduced  to a polynomial
of  degree n ;  if n is  an  odd  positive  number  results
the  same  for y2(x).  The  Legendre polynomials of degree
n are:
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where M= n/2 or M= (n-1)/2, any one of both to be an
integer; the n real roots are in the convergence range of
|x| < 1. The roots  of  equation  (13)  can  be  obtained  by
standard  methods  or using  a  computational algorithm as
the one in [8].

Operator  of  equation  (8)  can  be  divided  in N segments
defined  by  the  roots j of  the  Legendre polynomials Pn
of (13), choosing:
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Numerical Results

To compare both  techniques, we solve Pocklington
equation for a /2 dipole, using pulse and Delta as
weighting  functions, comparing solution  for pulse,
triangular and piecewise sinusoidal as base  functions,
conductor  is divided  in N,  equal  equidistant  and unequal
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non-equidistant  segments  for each  one.  The  electric  field
over  the  conductor  surface  is  obtained  getting  current
from  (11)  and recalculating  from  (6).  As  is  known  the
interface  between  two  segments  and open  ends,  are
points  of discontinuity, due interrupted integration,
producing peak errors and reducing solution accuracy.

The testing object is a /2 dipole divided in 58 segments
with 116 data points (end and middle points in each
segment) with  radius a=L/100 and a gap width  of  0.05L,
where L is the dipole length  and  a  gap voltage of 1V. Figs.
2 and 3  show  results  for equidistant  segments and Figs. 4
and 5  for non-equidistant segments, with delta and pulse
weight functions, espectively, for the whole dipole: We note in all four figures, errors in the segment junctions

(more clearly in delta functions), but mainly the  great  error
at the end of structure, reduced notably with non-equidistant
segmentation. For a more detailed view, we present graphics
near the source gap and dipole end in following figures:
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As  we  can  see,  best  results  are  obtained  with  pulse
weight  function  for  both,  equidistant  and  non-equidistant
segments, although even better  results are  for  the  second
one. As a matter of comparison  the Figs. 14 and 15 show
results, for an equidistant and non-equidistant, near source
and end dipole, with pulse as weight function.

Conclusion

Equidistant and non-equidistant division are presented in
solution of Pocklington equation using the Method of
Moments, comparing both with pulse and delta as weight
functions; it is noticed  the great reduction in discontinuities
along the conductor, mainly in the far end, with a comparing
reduction of almost 18 dB down for the best results for pulse
as weight function, as shown by Fig. 15.
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