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Abstract

We present a non-equidistant sampling for the Method of Moments in the solution of Pocklington equation operator, to prove the reduction
of segments junctions and conductor far end discontinuities. Comparison of equidistant and non-equidistant sampling is presented,

obtaining E field over the surface of a A/2 dipole.
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Introduction

For the solution of integral and differential equations
using the Method of Moment (MM), the operator is
divided in N segments, usually of the same size, each
one besides the next, keeping the lineal independence of
the resulting matrix equation; however, it is known that
when the segments are of the same size sometimes the
interpolation produces the Runge-Borel effect, incrementing
the residual error in both the conductor surface and
mainly in the open ends of the conductor, the problem
is more acute when is applied to an integral and
differential equation as the Pocklington equation, as is
analyzed by literature [1-3]. In general, the error is not
due to interpolation method itself but the way to divide
the operator using segments of the same size. We
propose the division of operator using non-equidistant
segments, whose size and position is defined by the
Legendre polynomials, the results show the reduction of
interpolation error when is applied to the Pocklington
equation solution, using the Method of Moments of a A/2
dipole. For facility and as matter of comparison, in this
paper is used piecewise sinusoidal, triangular and pulse as
basis functions and pulse and Dirac’s delta as weight
functions, applying them for equidistant and non-
equidistant segments, testing the electric field over the
conductor surface, which theoretically should be zero,
except in the source gap.

Pocklington Equation

In 1897 Pocklington deduced his equation for straight
structures [4], and in 1965 Mei [5], used a heuristical
procedure to define it for bent wires; for an arbitrary
shaped wire as the one shown in Fig.1, it is possible to
deduce the equation using a formal way, starting from
Maxwell equations [6] getting:
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where Eé is the tangential incident electric field and s~ &

r’ are the arc length and position vector over the wire
surface, respectively. Considering the thin-wire
approximation and skin effect, is possible to express the

electric field as a linear integration over s’. The general
Pocklington equation (1) can be used for any possible thin
wire geometry. The wire’s geometry is expressed by the
dot product ses’, where s(s) is the unit tangential vector for
the wire’s axis and s’(s’) the same for the parallel curve
representing the current filament, shown by Fig.1:
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Fig. 1. Arbitrary shaped wire.

The geometry is also expressed by the difference between
the vectors |r - '] as:
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Defined all former equations, the work is reduced to
find the vectors representing the parallel and axis curves
for the considered wire and solve it by Method of Moments.

The MM Solution to Pocklington’s Equation.

The objective of the MM applied to Pocklington’s
equation is to get the current distribution /(s in the wire,
considering that unknown function is part of the integral
operator. The MM formulation is used to get a numerical
solution of (1) establishing that the unknown function must
be expressed in terms of a linear combination of linearly
independent functions i,(s’) called basis functions:
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¢, are the unknown coefficients to be determined and N the
number of basis function. Substituting (4) into (1) results an
equation with N unknowns:
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for a consistent equation system, is necessary to find N
linearly independent equations, obtained by taking the inner
product of (5) with other set of N chosen linearly
independent functions w,,(s) named weighting function:
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using inner product definition, (6) can be written as:
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then the system in matricial form is:
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where the elements Zmn are obtained from:
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The ¢, are the system’s unknowns. The matrices of (8)
are known as impedance matrix [Z,,], current matrix
(cu), and voltage matrix ( V,,). The solution for (8) is:

(c,)=12,,1",) (11)

where the inverse matrix [Z,,,,,]'1
technique [6].

is obtained by a numerical

To solve (11) is necessary to define base and weight
functions; as it is known both functions are selected
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arbitrarily. The most widely used subdomain functions have
been a subject of research, some discussion of this may be
found in [1,7], but the more often used are Dirac’s delta,
pulse, triangle, piecewise sinusoidal and trigonometric
functions. For facility and as matter of comparison, in this
paper is used piecewise sinusoidal, triangular and pulse
as basis functions and pulse and Dirac’s delta as weight
functions, applying  them for equidistant and non-
equidistant segments, testing the electric field over the
conductor surface, which theoretically should be zero,
except in the source gap.

Legendre Polynomials for non-equidistant Segments

To obtain equidistant segments implies only to divide by N
times the length of the conductor, for the non-
equidistant division we use the roots of the Legendre
Polynomials to define position and length of segments.

The differential equation of Legendre is given by:

(1-x*)y"

To solve (12) is used the classical method of series, getting
two solutions, both linearly independent:
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convergence of both series is in the range x| <l. When n
is an even positive number y;(x) is reduced to a polynomial
of degree n ; if n is an odd positive number results
the same for y,(x). The Legendre polynomials of degree
n are:
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where M= n/2 or M= (n-1)/2, any one of both to be an
integer; the n real roots are in the convergence range of
|x| < 1. The roots of equation (13) can be obtained by
standard methods or using a computational algorithm as
the one in [8].

Px=Y (1" (14)

Operator of equation (8) can be divided in N segments
defined by the roots & of the Legendre polynomials P,
of (13), choosing:
, b+a b-a
s; =

‘ 2 2

Numerical Results

& j=12,..,N (15).

To compare both  techniques, we solve Pocklington
equation for a A/2 dipole, using pulse and Delta as
weighting  functions, comparing solution for pulse,
triangular and piecewise sinusoidal as base functions,
conductor is divided in N, equal equidistant and unequal
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non-equidistant segments for each one. The electric field
over the conductor surface is obtained getting current
from (11) and recalculating from (6). As is known the
interface between two segments and open ends, are
points of discontinuity, due interrupted integration,
producing peak errors and reducing solution accuracy.

The testing object is a A/2 dipole divided in 58 segments
with 116 data points (end and middle points in each
segment) with radius a=L/100 and a gap width of 0.05L,
where L is the dipole length and a gap voltage of 1V. Figs.
2 and 3 show results for equidistant segments and Figs. 4
and 5 for non-equidistant segments, with delta and pulse
weight functions, espectively, for the whole dipole:
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Figure 2. Equidistant Segments for Delta
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Figure 3. Equidistant Segments for pulse
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Figure 4. Mon-equidistant Segments for Delta
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Figure 5. Mon-equidistant Segments for Pulse

We note in all four figures, errors in the segment junctions
(more clearly in delta functions), but mainly the great error
at the end of structure, reduced notably with non-equidistant
segmentation. For a more detailed view, we present graphics
near the source gap and dipole end in following figures:
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Figure 6, Mear source Equidistant for Delta
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Figure 7. Near source equidistant for pulse
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Figure 8. Mear source non-gquidistant for delta
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Figure 9. Mear source non-2 quidistant for pulse
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Figure 10. Near end equidistant for delta
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Figure 11. Near end equidistant for pulse
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Figure 12, Near end non-equidistant for delta
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Figure 13. MNear end non-equidistant for pulse

As we can see, best results are obtained with pulse
weight function for both, equidistant and non-equidistant
segments, although even better results are for the second
one. As a matter of comparison the Figs. 14 and 15 show
results, for an equidistant and non-equidistant, near source
and end dipole, with pulse as weight function.
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Figure 14. Near source 2 quidistant and non- equidistant for pulse
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Figure 15. Mear end equidistant and non-equidistant for pulse

Conclusion

Equidistant and non-equidistant division are presented in
solution of Pocklington equation using the Method of
Moments, comparing both with pulse and delta as weight
functions; it is noticed the great reduction in discontinuities
along the conductor, mainly in the far end, with a comparing
reduction of almost 18 dB down for the best results for pulse
as weight function, as shown by Fig. 15.
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