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Abstract
The aim of this paper is to solve the Fredholm integral equations numerically using piecewise Bernoulli polynomials. The modified
Bernoulli polynomials are derived explicitly over the unit interval. A matrix formulation for non-singular linear Fredholm integral
equations is derived by the technique of Galerkin method. In this method, the Bernoulli polynomials are exploited as basis functions in
the approximation. Numerical examples are considered to verify the accuracy of the proposed derivations.
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I. Introduction

In the survey of solutions of integral equations, a large
number of analytical but a few approximate methods are
available for solving numerically various classes of integral
equations [1, 2, 7, 8 ]. Since the piecewise polynomials are
differentiable and integrable, the Bernstein polynomials [5 –
8] have been used for solving differential and integral
equations numerically. Recently, integral equations have
been solved by the well known variational iteration method
[9]. In the literature [7], Mandal and Bhattacharya have
attempted to solve integral equations numerically using
Bernstein polynomials, but they obtained the results in terms
of finite series solutions. In contrast to this, we solve the
linear Fredholm integral equation by exploiting very well
known Galerkin method [3], and Bernoulli polynomials [4]
are used as trial functions. For this, we give a short
introduction of Bernoulli polynomials first. Then we derive
a matrix formulation by the technique of Galerkin method.
To verify the accuracy of our formulation we consider four
examples, in which we obtain exact solutions for three
examples even using a few and lower order polynomials.
The error estimation for the last example shows an excellent
agreement of accuracy compared to exact solution, and
verifies the features of convergence. All the computations
are performed using MATHEMATICA.
II. Bernoulli Polynomials
The Bernoulli polynomials [4] upto degree n can be
defined over the interval ]1,0[ implicitly by
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These Bernoulli polynomials may be defined explicitly as
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The first 11 Bernoulli polynomials )10( n are given bellow
for using in this paper:

1)(0 xB

xxB )(1

2
2 )( xxxB 

3
2

3 2
3

2
)( xxxxB 

432
4 2)( xxxxB 

5
43

5 2
5

3
5

6
)( xxxxxB 

65
42

6 3
2

5
2

)( xxxxxBr 

7
653

7 2
7

2
7

6
7

6
)( xxxxxxBr 

87
642

8 4
3

14
3

7
3

2)( xxxxxxBr 

9
8

7
5

3
9 2

96
5

212
10
3)( xxxxxxxBr 

109
8

64
2

10 5
2

1575
2

3)( xxxxxxxBr 

Note that Bernoulli polynomials have a special property at
0x and 1x , respectively,

,0)0( nBr 1n and ,0)1( nB .2n

Now the first six polynomials over ]1,0[ are shown in Fig.
1(a), and the remaining five polynomials are shown in Fig.
1(b).
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III. Formulation of Integral Equation in Matrix Form
Consider a general linear Fredholm integral equation (FIE)
of second kind [1, 2] is given by

)()(),()()( xfdttxtkxxa
b

a
   , bxa  (2)

where )(xa and )(xf are given functions, ),( xtk is the
kernel, and )(x is the unknown function or exact solution
of (2), which is to be determined.
Now we use the technique of Galerkin method [Lewis, 3] to
find an approximate solution )(~ x of (2). For this, we
assume that
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where )(xBi are Bernoulli polynomials (basis) of degree i
defined in eqn. (1), and ia are unknown parameters, to be
determined. Substituting (3) into (2), we obtain
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Then the Galerkin equations [Lewis, 3] are obtained by
multiplying both sides of (4) by )(xB j and then
integrating with respect to x from a to b, we have
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Since in each equation, there are three integrals. The inner
integrand of the left side is a function of x and t, and is
integrated with respect to t from a to b. As a result the
outer integrand becomes a function of x only and
integration with respect to x yields a constant. Thus for
each j ( n,,1,0  ) we have a linear equation with 1n
unknowns ia ( ni ,,1,0  ). Finally (5a) represents the
system of 1n linear equations in 1n unknowns, are
given by
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Now the unknown parameters ia are determined by solving
the system of equations (5), and substituting these values of
parameters in (3), we get the approximate solution )(~ x of
the integral equation (2). The absolute relative error E for
this formulation is defined by

)(0 xBr
)(1 xBr
)(2 xBr
)(3 xBr
)(4 xBr
)(5 xBr

)(6 xBr
)(7 xBr
)(8 xBr
)(9 xBr
)(10 xBr

x

)(xBri

)(xBri

x

Fig. 1(a). Graphical representations of Bernoulli polynomials
up to degree 5.

Fig. 1(b). Graphical representations of Bernoulli polynomials
from degree 6 to degree 10.
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IV. Numerical Examples
In this section, we explain three integral equations which are
available in the existing literatures [1, 2, 7]. For each
example we find the approximate solutions using Bernoulli
polynomials.
Example 1: We consider the FIE of 2nd kind given by [7]
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Using the formulation described in the previous section, the
equations (5) lead us, respectively,
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Solving the system (7) for ,3n the values of the
parameters are:
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and the approximate solution is
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which is the exact solution.

Example 2: Consider a FIE of 2nd kind given by [7]
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Proceeding as the example 1, the system of equations
becomes as
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For ,3n solving system (9), the values of the parameters
( ia ) are:

0,0,1,0 3210  aaaa ,

and the approximate solution is xx )(~
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solution.

Example 3: Consider another FIE of 2nd kind given by [1,
pp 213]
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Proceeding as the previous examples, the equations (5b) and
(5c) become as
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For ,3n solving system (11), the values of the
parameters ( ia ) are:
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and the approximate solution is
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Again we have the exact solution

Example 4: Consider another FIE of 2nd kind given by
[2, pp 124]
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Since the equations (5b) and (5c) are of the form
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Table. 1. Numerical solutions at various points and
corresponding absolute errors of example 4.

x Exact
Solutions

Approximate
Solutions

Error, E

Polynomials used 4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-0.1855612526

-0.2050768999

-0.2266450257

-0.2504814912

-0.2768248595

-0.3059387842

-0.3381146470

-0.3736744748

-0.4129741624

-0.4564070342

-0.5044077810

-0.1853868426

-0.2051159200

-0.2267185494

-0.2505049431

-0.2767853131

-0.3058698717

-0.3380688310

-0.3736924032

-0.4130508005

-0.4564542350

-0.5042129189

0.000940

0.000190

0.000324

0.000094

0.000143

0.000225

0.000136

0.000048

0.000186

0.000103

0.000386

x Exact
Solutions Polynomials used 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-0.1855612526

-0.2050768999

-0.2266450257

-0.2504814912

-0.2768248595

-0.3059387842

-0.3381146470

-0.3736744748

-0.4129741624

-0.4564070342

-0.5044077810

-0.1855710208

-0.2050729963

-0.2266433924

-0.2504841199

-0.2768280330

-0.3059389289

-0.3381115484

-0.3736715751

-0.4129756359

-0.4564113012

-0.5043970842

5.264169×10-5

1.903450×10-5

7.206563×10-6

1.049471×10-5

1.146363×10-5

4.732287×10-7

9.164287×10-6

7.760090×10-6

3.568115×10-6

9.349075×10-6

2.120664×10-5

x Exact
Solutions Polynomials used 6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-0.1855612526

-0.2050768999

-0.2266450257

-0.2504814912

-0.2768248595

-0.3059387842

-0.3381146470

-0.3736744748

-0.4129741624

-0.4564070342

-0.5044077810

-0.1855610006

-0.2050770088

-0.2266449063

-0.2504813833

-0.2768249425

-0.3059389458

-0.3381146594

-0.3736743009

-0.4129740843

-0.4564072670

-0.5044071950

2.405587×10-6

8.649860×10-7

3.273606×10-7

5.420754×10-7

1.162778×10-7

4.731259×10-7

1.259522×10-7

3.620806×10-7

2.074285×10-7

4.075118×10-7

9.560245×10-7

x Exact
Solutions

Polynomials used 7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-0.1855612526

-0.2050768999

-0.2266450257

-0.2504814912

-0.2768248595

-0.3059387842

-0.3381146470

-0.3736744748

-0.4129741624

-0.4564070342

-0.5044077810

-0.1855612694

-0.2050768958

-0.2266450312

-0.2504814909

-0.2768248544

-0.3059387842

-0.3381146522

-0.3736744750

-0.4129741564

-0.4564070387

-0.5044077618

9.049198×10-8

1.990287×10-8

2.425409×10-8

9.600473×10-10

1.846251×10-8

7.752014×10-11

1.554022×10-8

5.635104×10-10

1.441928×10-8

9.997793×10-9

3.797784×10-8

Fig.2a. Relative error E using 4 polynomials

Fig.2c. Relative error E using 6 polynomials

Fig.2d. Relative error E using 7 polynomials

Fig.2b. Relative error E using 5 polynomials
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Solving the system (5a) using equations (13), we have the
approximate solutions for 5,4,3n and 6, respectively as:

32 051702.0078167.0188957.0185387.0)(~ xxxx 
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xx

xxxx
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0308581.00925932.018556.0185561.0)(~

xxx

xxxx


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Now the approximate solutions, exact solutions, and the
absolute relative error E, between exact and approximate
solutions, at various points of the domain using the
Bernoulli polynomials 4 – 7 are displayed in Table 1.
Also plotting the absolute relative errors, shown in Fig.2, we
see that the maximum errors are 54 10,10  , 610 and 810

respectively, with 4, 5, 6 and 7 Bernoulli polynomials.
These lead us that the convergence of the approximate
solutions and the desired accuracy hinges on the size of the
basis set chosen.
V. Conclusion
We have obtained the approximate solution of the unknown
function of the Fredholm integral equations of second kind
by the well known Galerkin method using Bernoulli
polynomials as trial functions. The computed solutions are
compared with the exact solutions, and we have found a
good agreement with the exact solution. In this connection,
we note that the numerical solutions are coincided with the
exact solutions even a few of the polynomials have been
used in the approximation. Thus the authors’ concluding
remark is that this method may be applied to solve other
integral equations numerically to get the desired accuracy.
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