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Abstract
In this paper, we investigate the Lorenz attractor and its dynamical behavior. We discussed the strange attractor, as its chaotic behavior.
These behaviors are analyzed in analytically, numerically and graphically. The results are compared with behavior for a couple of other
strange attractors. Mathematica are used to solve the model and sketch the graphical solution of chaotic and non-chaotic behavior.

I. Introduction
The Lorenz equations are a set of three ordinary differential
equations modeling convection rolls in the atmosphere that
appear as warm air rises into cooler layers of air at higher
altitude. This set of equations was originally proposed by
Edward Lorenz in 1963. Lorenz1, a meteorologist as well as
a Mathematician, derived by introducing a truncation to the
Navier-Stokes equation2 effectively reducing it to a set of
three ordinary differential equations in 3-dimensional space.
The non-linear equations are

XY
dt
dX  

YXZrX
dt
dY



bZXY
dt
dZ



where )(tX is the rate of convective overturning, )(tY is the
horizontal temperature variation, and )(tZ is the vertical
temperature variation. The parameter r is proportional to
the Rayleigh number, b is dependent on the geometry of
the cell and the parameter is proportional to the Prandtl
number, which is the ratio of the fluid viscosity to the
thermal conductivity for a given fluid. The properties of the
system, which is originally used to model fluid circulation in
atmosphere, is the subject of dynamical systems and chaos
theory.

The equations are derived as a simplification of Saltzman’s
(1962) non-periodic model for convection. For the Earth’s
atmosphere, typical values for parameters are  =10, r = 28
and b = 8/3, and the initial point is (10, 0, 10). If this system
is perturbed slightly, the general form will remain. Like the
weather, this system is highly sensitive to its initial
conditions. This characteristic is also sometimes used in
turbulence. A small difference in initial conditions would
yield a small difference in results, except near unstable
equilibrium.

Fig. 1. A numerical solution of the Lorenz equations projected
onto the X-Z plane showing non-periodic behavior

Two trajectories begin with very close initial conditions, in
particular, 1021  XX , ,10,0 121  ZYY

.000000001.102 Z . For the first 25 time units, the two
trajectories seem identical. However, beyond 30 time units,
they seem completely unrelated to each other.

Fig. 2. Two numerical solutions of the Lorenz equations showing
sensitivity to initial conditions

Due to the non-linearity of the equations, an exact form of
the solution can’t be calculated. The Runge-Kutta method is
one of the most well known numerical methods for the
differential equations of order four and five. The numerical
methods, such as Euler’s and Runge-Kutta methods are
calculated approximation to the system of solution through
iteration3. We show that the modified fifth order Runge-
Kutta method are able to solve the Lorenz model and
compare the solution between methods on chaotic and non-
chaotic model.

II. Runge-Kutta Method

The modified fifth-order Runge-Kutta HaM-RK5[5]
methods4 were done by substituting the arithmetic mean in
the stages. The formula is presented as:
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4321 ,,, bbbb and 5b are the weight chosen so that the

parameter 4321 ,,, aaaa and 5a can be determined and
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is defined as the arithmetic mean. For simplicity

of the algebra, we consider f as a function of y, without loss
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of generality. This will reduce the Taylor series expansions
of ,ik 5,4,3,2,1i to the following:
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Taylor series expansion of 1ny can be written as
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comparing the coefficients of the terms up to ,5h some
equations which are used to determine the parameters

4321 ,,, bbbb , 5b , 432 ,, aaa , 5a are obtained and solved
using Mathematica 5.2 software. It can be represented by

)( 55443322111 kbkbkbkbkbhyy nn 
where
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We attained two sets of solution:

RK5[1]: 1.04 a and ,1.05 a
1b 3.7783286500685627, 2b 0.18312885616492072,

3b 0.04837565197099888, 4b 17.700904612988186,

5b 22.61398646725067, 2a 0.6826487126671337

and 3a 2.7638749083367884.

The second set is,
RK5[2]: 5.04 a and ,5.05 a
1b 0.17604368301238185, 2b 0.1535302041097001,

3b 0.3333576978522315, 4b 1.1214760294680406,

5b - 0.11769221873789096, 2a 0.9869797512962593

and 3a 0.4488850808987729.

Table. 1. x-direction differences among all methods for
r = 23.5

t
x

RK5[1]0.01-
RK5[1]0.001

RK5[2]0.01-
RK5[2]0.001

HaM-RK5[5]0.01-
HaM-RK5[5]0.001

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.00E+00
5.66E-02
2.21E-02
5.04E-03
7.38E-03
6.77E-02
1.25E-02
1.12E-02
1.95E02
2.86E-02
1.70E-02

0.00E+00
1.92E-01
7.95E-02
1.24E-02
2.03E-02
2.33E-03
4.39E-02
3.44E-02
7.00E-02
9.68E02
5.48E-02

0.00E+00
1.15E+00
2.16E+00
2.96E+00
3.69E+00
4.92E+00
5.96E+00
3.89E+00
3.13E+00
6.97E+00
2.40E+00

III. Results and Discussions

To solve the Lorenz system where  and b are set to be 10
and 8/3 respectively which the initial conditions is given by
x(0) = -15.8, y(0) = - 7.48 and z(0) = 35.64. The fifth-order
methods were examined in time range [0, 1] with two time
steps Δt = 0.01 and Δt = 0.001.

For r = 23.5, we determine the accuracy of RK5[1], RK5[2]
and HaM-RK5[5] with time steps Δt = 0.01 and Δt = 0.001.
The results are presented in Tables 1-3 and the
corresponding graph in Figs. 1-3.
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Fig. 1. Absolute error of all methods for x

Table. 2. y-direction differences among all methods for
r = 23.5

t

y

RK5[1]0.01-

RK5[1]0.001

RK5[2]0.01-

RK5[2]0.001

HaM-

RK5[5]0.01-

HaM-

RK5[5]0.001

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.00E+00
4.51E-02
1.62E-02
1.02E-02
2.44E-03
8.88E-03
2.01E-02
1.06E-02
4.04E-02
2.14E-02
3.91E-02

0.00E+00
1.52E-01
5.35E-02
3.14E-02
3.69E-03
3.41E-02
6.64E-02
4.31E-02
1.38E-01
6.83E-02
8.39E-03

0.00E+00
4.83E+00
3.66E+00
3.49E+00
4.67E+00
6.37E+00
6.28E+00
6.63E-01
1.06E+01
5.85E+00
2.97E+00

Fig. 2. Absolute error of all methods for y

Table. 3. z-direction differences among all methods for
r = 23.5

t

z
RK5[1]0.01-
RK5[1]0.001

RK5[2]0.01-
RK5[2]0.001

HaM-RK5[5]0.01-
HaM-RK5[5]0.001

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.00E+00
5.79E-02
3.23E-02
2.15E-02
2.21E-02
1.87E-02
6.77E-03
3.79E-02
1.78E-03
3.35E-02
4.11E-02

0.00E+00
2.05E-01
1.15E-01
7.52E-02
7.30E-02
5.63E-02
3.18E-02
1.28E-01
1.83E-03
1.18E-01
1.40E-01

0.00E+00
1.78E-01
1.40E+00
1.55E-01
1.74E+00
4.98E+00
1.05E+01
1.46E+01
5.93E+00
8.29E+00
8.66E+00

Fig. 3. Absolute error of all methods for z

From the graphs it can be seen that RK5[1] gives a better
accuracy for x , y and z-directions where the absolute error
from time steps Δt = 0.01 to Δt = 0.001 for each direction
are less as compared to RK5[2] and HaM-RK5[5].

For a chaotic system r = 28, it can be seen that once again
RK5[1] shows a better accuracy as compared to the other
two methods for time steps Δt = 0.01 and Δt = 0.001. This
can be observed from Tables 4-6 and Figs. 4-6 below:

Table. 4. x-direction differences among all methods for
r = 28

t x
RK5[1]0.01-
RK5[1]0.001

RK5[2]0.01-
RK5[2]0.001

HaM-RK5[5]0.01- HaM-
RK5[5]0.001

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.00E+00
4.52E-02
2.78E-02
1.60E-03
2.99E-03
2.17E-03
4.72E-03
2.88E-02
4.48E-02
7.31E-02
3.87E-02

0.00E+00
1.53E-01
9.73E-02
8.93E-03
5.94E-03
3.37E-04
2.57E-02
9.64E-02
1.62E-01
2.50E-01
1.29E-01

0.00E+00
1.27E-01
1.42E+00
2.10E+00
3.19E+00
5.87E+00
1.20E+01
2.26E+01
2.79E+01
1.70E+01
5.39E+00
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Fig. 4. Absolute error of all methods for x

Table. 5. y-direction differences among all methods for
r = 28.

t
x

RK5[1]0.01-
RK5[1]0.001

RK5[2]0.01-
RK5[2]0.001

HaM-
RK5[5]0.01-
HaM-
RK5[5]0.001

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.00E+00
5.49E-02
6.88E-02
4.82E-03
7.03E-03
2.28E-03
1.60E-03
9.16E-02
1.26E-02
3.88E-02
2.10E-02

0.00E+00
1.84E-01
2.33E-02
1.44E-03
2.69E-03
1.81E-04
6.72E-02
2.07E-02
4.33E-01
1.24E-01
6.60E-01

0.00E+00
1.77E-01
2.24E+00
2.76E+00
4.79E+00
9.76E+00
2.04E+01
3.31E+01
2.56E+01
3.04E+01
2.13E+00

Fig. 5. Absolute error of all methods for y

Table. 6. z-direction differences among all methods for
r = 28

t
x

RK5[1]0.01-
RK5[1]0.001

RK5[2]0.01-
RK5[2]0.001

HaM-RK5[5]0.01-
HaM-RK5[5]0.001

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.00E+00
4.64E-02
4.73E-02
3.08E-03
2.40E-03
2.06E-02
1.31E-02
6.82E-02
2.22E-03
8.20E-02
6.60E-02

0.00E+00
1.64E-01
1.65E-01
1.08E-01
8.23E-02
6.58E-02
2.77E-02
2.48E-01
1.09E-02
2.87E-01
2.28E-01

0.00E+00
2.37E+00
7.94E+00
5.19E+00
7.00E+00
1.67E+00
5.58E+00
1.46E+00
5.57E+00
8.29E+00
6.48E+00

Fig. 6. Absolute error using RK5[1] on Δt = 0.01 for r = 28

Fig. 7. Phase portrait using RK5[1] on Δt = 0.01 for r = 23.5

Fig. 8. Phase portrait using RK5[1] on Δt = 0.01 for r = 28

The xyz-phase portrait using RK5[1] on Δt = 0.01 for r = 23.5
is shown in Fig. 7. Figure 8 shows the xyz-phase portrait of
the chaotic Lorenz system5 using the RK5[1] on Δt = 0.01 for
r = 28.

IV. Dynamical Behavior of Lorenz Model

The Jacobian matrix gives
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and setting the determinant minus  equal to zero gives
the eigenvalues as solutions of
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If the equilibrium point is taken to be the origin, this
simplifies to
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Since b is clearly a solution, we get
  0)1()1()( 2  rb  ,

and the three eigenvalues are:
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r
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,3 b expressed in such a way to make it clear that

0,,0 321   for .1r Thus the origin becomes
unstable6. This is generally called a saddle, with a one-
dimensional, unstable manifold. The eigenvalues of a
linearization near the solutions of

.0)1(2)()1(23  rbrbb 

Let b = 8/3 and σ = 10, then all three roots have negative
real part if

.
19
470

1
)3(

Hr
b
br 







For ,Hrr  the two complex eigenvalues have positive
real part, and the equilibrium become unstable6. At

,Hrr  there is a sub critical Hopf bifurcation.

For the values 99.524 < r < 100.795, there exists a period
doubling window. The first period doubling, listed in
increasing order of period, occurs at r ≈ 99.98. Just above
this bifurcation value, trajectories approach a stable periodic
orbit that circles the first equilibrium once, then the second
equilibrium twice, which we will denote [1-2-2], as in Fig.
9. As r decreases, the period doubles to [1-2-2-1-2-2] for
99.629 < r < 99.98 (Fig. 10). As r continues to approach the
lower boundary of this window, 99.524, there is a cascade
of period doubling similar to the behavior of chaotic one-
dimensional maps. For 99.547 < r < 99.629 there is a period
of [1-2-2], for 99.529 < r < 99.547 there is a period of [1-2-
2], in Figs. 11 and 12 respectively.
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Fig. 9. Stable periodic orbit for r = 100.5
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Fig. 10. Stable periodic orbits after the first period doubling, for
r = 99.7
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Fig. 11. Stable periodic orbit after the second period doubling, for
r = 99.6
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Fig. 12. Stable periodic orbit after the third period doubling, for
r = 99.537

In general, the period doubling cascades have the same
properties as in scalar maps, such as the Feigenbaum

number, ....669.4lim
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used to find the accumulation value .r The behavior in the
upper half of the period doubling window is interesting as
well. The fact that the window has an upper bound suggests
that the system demonstrates non-periodic behavior once
again as r exceeds it. This is true, and the transition can be
seen through what is called intermittent chaos. This
phenomenon is shown in Fig. 13 for r = 100.93. As time
progresses, the trajectory tends toward the periodic orbit, but
so often it lapses into non-periodic, chaotic behavior for an
interval of time. If r is within the period doubling window,
the intermittent chaos will eventually cease, leaving a
periodic orbit, but once r is beyond the upper bound cr ,
intermittent chaos will occur after any given time. As r
moves further from the window, the periods of intermittent
chaos will increase in length until they dominate the
trajectory.

Fig. 13. Intermittent chaos just above the period doubling window
for r = 100.93

There exist two other period doubling windows as r
increases. The first is 145 < r < 166. For 154.4 < r < 166.07
there is a stable symmetric periodic orbit with a period
described by [1-1-2-2]. At r ≈ 154.4 the stable symmetric
orbit splits into two stable asymmetric periodic orbits with
periods described by [1-1-2-2], producing between them an
unstable periodic orbit. These orbits undergo simultaneous
period doubling bifurcations as r decreases in a manner
similar to that of the first window7. The final period
doubling window is for 214.364 < r, with period described
by a symmetric stable [1-2] orbit. This window is similar to
the previous, except that for r > 313, the lowest period orbit
continues to exist.

Conclusion

The Lorenz model is highly sensitive to the initial
conditions of the system, but nevertheless falls into an
overall pattern as time increases regardless of initial
condition. In this paper, all three methods applied to the
Lorenz system when the system is chaotic and non-chaotic.
For both cases, it is proved that the modified fifth-order
Runge-Kutta method appears to be the best method to
approximate this solution based on its accuracy.
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