
Dhaka Univ. J. Sci. 59(1): 153-154, 2011 (January)

Associated polynomials of Chebyshev
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We introduce a new class of polynomials m
nT (x) which permit to generate the Chebyshev polynomials nT (x) and nU (x).
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The first-kind Chebyshev polynomials are given by [1,2]:
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where 2F1 denotes the Gauss hypergeometric function [3],
such that:
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with the important property

Tn( cos)= cos (n ), (3)

Similarly, for the second-kind Chebyshev polynomials we
have that [2]

,
2

1;
2
3;2,)1()( 12 






 


xnnFnxU n (4.a)

  ,0)2(31 2

2
2  N

NN UNN
dx
dUx

dx
Udx (4.b)




sin
)1sin()(cos 


nU n (4.c)

It is natural to search a generalization of (1) and (4.a), in
fact, in this work we introduce the Associated Polynomials
of Chebyshev, m=0,1,…,n:
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which are solutions of
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From (1), (4.a) and (5) we obtain the relations
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and from (5) for m=n & m=N, n=N+1 we deduce (2) and
(4.b), respectively. An open problem is to find the
corresponding extension of (3) and (4.c), that is, to
investigate if there is a closed expression for m

nT (cos) .

To elucidate  the meaning of  (5), we  remember  that  (1)
can be generated as  the determinant of Chebyshev matrices

nT (x) [2]

(8)

and we can obtain the characteristic equation [4,5] of

nT
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or in compact form
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that  is,  the m
nT (x) given by (5) are the polynomial

coefficients  in  the  characteristic equation of nT (x).
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Matlab program give us all roots xj of each m
nT in (9), thus

we can see that they are  real with  |xj| < 1, which  also
happens with  the  roots  of  (1)  and  (4.a).  In  another work
we will  study properties  as  recurrence, orthogonality  and
Rodrigues  formula  for the associated polynomials of
Chebyshev.
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