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We introduce a new class of polynomials 7' nm (x) which permit to generate the Chebyshev polynomials 7, (x) and U, (x).
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The first-kind Chebyshev polynomials are given by [1,2]:
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where ,F; denotes the Gauss hypergeometric function [3],
such that:
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Similarly, for the second-kind Chebyshev polynomials we
have that [2]
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It is natural to search a generalization of (1) and (4.a), in
fact, in this work we introduce the Associated Polynomials
of Chebyshev, m=0,1,...,n:
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which are solutions of
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From (1), (4.a) and (5) we obtain the relations
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and from (5) for m=n & m=N, n=N+1 we deduce (2) and
(4.b), respectively. An open problem is to find the
corresponding extension of (3) and (4.c), that is, to

investigate if there is a closed expression for Tnm (cosO) .

To elucidate the meaning of (5), we remember that (1)
can be generated as the determinant of Chebyshev matrices
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and we can obtain the characteristic equation [4,5] of
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Characteristic Equation
A-T,=0
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B —SxA +(8x2 = 2)A-T, =0
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or in compact form
n

DT =0, (10)
m=0
that is, the T nm (x) given by (5) are the polynomial

coefficients in the characteristic equation of 7, (x).
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Matlab program give us all roots x; of each 7, nm in (9), thus

we can see that they are real with |xj| < 1, which also
happens with the roots of (1) and (4.a). In another work
we will study properties as recurrence, orthogonality and
Rodrigues formula for the associated polynomials of
Chebyshev.
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