
Dhaka Univ. J. Sci. 58(2): 145-149, 2010 (July)

Implementation and Performance Analysis of a WiMAX Module in ns-2
Tahmina Zebin, Sanwarul Hoque, and Shahida Rafique

Department of Applied Physics, Electronics & Communication Engineering, Dhaka University, Dhaka-1000, Bangladesh
E-mail: tlzebin@yahoo.com

Received on 27.08.2008. Accepted for Publication on 04.02.2010

Abstract
WiMAX is a very promising wireless broadband technology. For all new technologies, performance studies are required and network
simulation is considered as a solution to test the performance of any upcoming technology. In ns-2 (a very popular and open source network
simulator), may protocol modules (like 802.3, 802.11, 802.15) have been implemented, but the IEEE-802.16 (WiMAX) module have not
been incorporated yet (till version ns-2.32). In this paper, a WiMAX module for the ns-2 simulator (v 2.32) has been implemented. This
module is based on the analysis presented by Chen et.al,2006. Some simulation scenarios are also been analyzed to test the module and the
same simulations are also been done on NCTUns-4.0 that has an implemented 802.16d module.

Keywords: WiMAX, IEEE-802.16, ns-2, NCTUns-4.0, Simulation.

I. Introduction
WiMAX -which stands for-Worldwide Interoperability for
Microwave Access, is a very promising wireless broadband
technology. It enables efficient data multiplexing and low
data latency for broadband data services including streaming
video and VoIP with high quality of service (QoS) by
providing high data throughput. WiMAX is going to
substitute other broadband technologies and has become an
excellent solution for the deployment of the well-known last
mile infrastructures in places where it is very difficult to get
with other technologies, such as cable or DSL, and where
the costs of deployment and maintenance of such
technologies would not be profitable. WiMAX could
connect rural areas in developing countries as well as
underserved metropolitan areas. It can even be used to
deliver backhaul for carrier structures, enterprise campus,
and Wi-Fi hot-spots providing with a cost-effective, rapidly
deployable solution [2]. Fig 1. shows some of the
deployment areas for WiMAX. WiMAX is being
considered as a serious competitor to 3G (third generation)/
4G cellular systems as high speed mobile data applications
can be achieved with 802.16e and other higher amendments
[14].

WiMAX technology mitigates the problems [4] resulting
from NLOS conditions by using:

• OFDM technology.
• Sub-Channelization.
• Directional antennas and Adaptive antennas.
• Transmit and receive diversity.
• Adaptive modulation and MIMO (multiple

input/multiple output) support.
• Error correction techniques and power control

Fig. 1. WiMAX deployment areas.

Fig. 2. Working environment in ns-2.32

II. Network Simulation

Network simulators attempt to model real world networks.
They will be close enough so as to give a

meaningful insight into how the network will work, and how
changes will effect its operation. Some of the popular
network simulators include OPNET modeler, OMNET++,
QUALnet, ns-2, NCTUns etc. Amongst them OPNET (Not
available for mass use) and NCTUns (open source-still
under development) has built in WiMAX modeler. In this
paper, We have used the wireless and mobile infrastructure
of ns-2 to implement a workable WiMAX module. The
network simulator 2 (ns-2) is a popular and powerful
simulation tool for the simulation of packet-switched
networks, which provides substantial support for simulation
of TCP, routing, and MAC protocol over wired and wireless
networks and is widely used in both academic and industrial
studies[8].

A. Softwares

• ns-allinone-2.32, nam-1.14(network animator for ns-2) and
NCTUns-4.0, xvidcap (to capture simulation instances as
shown in Fig 2.) on fedora core 8.

• Tracegraph205Windows along with MATLAB7.1 on
windowsXP to analyze tracefile generated by ns-2
simulations.

• Some graphs are also plotted in Microsoft Excel- 2007
with data collected from the tracegraph result on Matlab.

Zebin, Rafique et al.

B. Simulator Setting (in Fedora core 8)

ns is an object oriented simulator, written in C++, with an
OTcl (Object oriented tool command language) interpreter
as a front-end. ns uses two languages because simulator has
two different kinds of things it needs to do. C++ is fast to
run but slower to change, making it suitable for detailed
protocol implementation. OTcl runs much slower but can be
changed very quickly (and interactively), making it ideal for
simulation configuration. ns (via tclcl) provides glue to
make objects and variables appear on both languages. ns
documentation is available at [9]. The open source ns-
allinone packages are available at [10].

ns-2 Installation Steps: One must enter in the graphical
mode of fedora to use the simulators. The gcc and gtk
library packages must be installed.

1. First the zipped ns-allinone-2.32.tar.gz file is extracted
under the directory /bin [it can be any directory other than
/bin].

$ cp /media/pen/ns-allinone-2.32.tar.gz /bin

$ tar xzvf ns-allinone-2.32.tar.gz

2. Then after entering the extracted directory , a script
named “install” available there is executed to install tcl, tk,
otcl library and then build ns and nam[network animator].

$cd /bin/ns-allinone-2.32

$./install

3. To run ns without error: The PATH,
LD_LIBRARY_PATH and TCL_LIBRARY environment
variables should be set in the /root/.bashrc file. If the user is
using /bin/bash shell .bashrc contains all the bash shell
variable to be started at the beginning of the shell.

$gedit .bashrc

PATH=$PATH:/bin/ns-allinone-2.32/bin

export PATH

4. Then any network scenario written in tcl script can be run
by executing the command:

$ns example.tcl

5. The trace of the network can be stored in an example.tr
file to further analysis. We analyzed the trace file in
matlab7.1 with the help of TraceGraph 2.05 available at [12].
The matlab working directory should be changed to the
directory containing Tracegraph205Windows which
contains the necessary .m files to analyze the trace
files.”trgraph dir:/example.tr” is typed on the matlab
command window to have tracegraph to get & analyze some
built in performance curve based on the input trace file.

6. NAM can view and monitor the packet transfer between
different nodes in the playback form. The nam instance can
be separately executed once the simulation is done, by

$nam example.nam

NCTUns-4.0 Installation Steps: NCTUns-4.0 is a high
fidelity and extensible network simulator and emulator[11].
This simulator has a built in 802.16d PMP and MESH mode
protocol stack [simulation environment obviously different

than our ns- module] with rich tools to set the topology. It
has a graph-plotting tool at MENU--G_TOOLS--PLOT
_GRAPH. The installation steps of a NCTUns simulator are:

1. First the file named "NCTUns-allinone-linux-2.6.23.8-
fc8.20071205.tar.gz" is unzipped in /root directory.

$tar xzvf NCTUns-allinone-linux-2.6.23.8-
fc8.20071205.tar.gz

2. Execute the install.sh script available in /root/NCTUns-
4.0

$ cd /root/NCT Uns-4.0/
$./install.sh

After completing the installation restart the pc and enter into
the new NCTUns-4.0 kernel.

** Must disable the firewall and SELinux before
install.

** Must login as root user.
3. After installation. to run the NCTUns-4.0,add
thefollowing in .bashrc

$ gedit /root/.bashrc
source /usr/local/nctuns/etc/nctuns.bash

Open a terminal/console and run the dispatcher
$/usr/local/nctuns/bin/dispatcher

Run the coordinator on another terminal:
$/usr/local/nctuns/bin/coordinator

Run nctunsclient on another terminal
$/usr/local/nctuns/bin/nctunsclient

Nctunsclient will run the simulator on the screen. Then a
simulation scenario can be drawn in it in the draw mode[D],
different node properties can be set in the edit[E] mode,
simulation can be run on the run[R] mode. Once the
simulation is done, playback of the simulation can be seen
in playback[P] mode which shows visual connection and
packet transfer in the network. Xvidcap can be used here to
capture the thorough simulation steps. NCTUns is less
configurable for a general user; it requires a deep study of
the developer manual available at [10] to bring change in
any predefined stack.

ns-2 WiMAX Module

The WiMAX module implemented here has been developed
in unified modeling language (UML)[1,5]. This module is
based on IEEE 802.16-2004 point-tomultipoint (PMP) mode,
which means that one BS can serve multiple subscriber
stations (SSs) concurrently. We choose the orthogonal
frequency-division multiple access (OFDMA) schemes for
the physical (PHY) layer. Based on the OFDMA PHY
specifications, it has been of major interest for both wireless
applications due to its high date rate transmission capability
and its robustness to multipath delay spread [13,15].

This 802.16-based WiMAX module named as the
Mac802_16 class is in accordance with the specifications of
the IEEE 802.16-2004 standard [3] and based on the ns-2
version 2.32 [6]. All modules are designed by using object
oriented programming language C++ and modeled as
several classes. The relationship between the WiMAX
module and legacy ns-2 modules is based on the original
network component stack of the ns-2 as shown in Fig 3. It
illustrates the type of objects for the traffic generating agent
(TGA), the link layer (LL), the interface queue (IFQ), the

146

Implementation and Performance Analysis of a WiMAX Module in ns-2

designed MAC layer (WiMAX module), and the PHY layer
(Channel).

The MAC layer in WiMAX basically provides intelligence
to the PHY layer. It contains 2 sub layers: service-specific
convergence sub-layer (CS) and the MAC common part
sub-layer (CPS).

The service-specific convergence sub-layer is responsible
for interfacing with upper layers while the MAC common
part sub layer carriers out the key MAC functions [7].

A.Service Specific Convergence Sub-Layer

The IEEE 802.16-2004 standard specifies 2 types of service
specific convergence sub-layers for mapping service to and
from the MAC layer; the ATM sub-layer for mapping ATM
services and the packet sub-layer for mapping packet
services such as IPv4, IPv6 and Ethernet. The main task of
the sub-layer is to map Service Data Units (SDUs) to MAC
connections, and to enable QoS and bandwidth allocation
based on the parameters received from the upper layers.

B. The MAC Sublayer

The MAC CP(Common Part) sublayer is the main part of
the MAC and maintains the MAC operations and
management messages of the system. The management
messages such as DCD/UCD(Uplink /Downlink Channel
descriptor), DL-MAP/UL-MAP(Media Access Protocol),
DSA, DSC, DSD, RNG-REQ(range request),
RNGRSP(range response), and so forth are generated in
this sublayer. The main body of the MAC CPS is
constructed by a Mac802 16 class, which contains several
independent functions such as Ranging(), Fragmentation(),
BandwidthRequest(), and so forth. Some brief descriptions
of these functions are provided here:

Ranging: This is the first step for the subscriber station to
enter the network. A new SS has to scan for the
DL(Downlink) channel and establish synchronization with
the BS. After synchronizing with the BS, the SS will obtain
transmit parameters from the UCD message, which is
periodically generated by the BS, to recognize the channel
information for transmission. The ranging function also
handles the backoff mechanism, sets the contention window
size to avoid collision, provides a CID (connection ID) to
the SS after being registered for future communication.

MAC Management: Five kinds of messages, DCD, UCD,
DL-MAP, UL-MAP, and bandwidth request (BR) are used
in this function.

802.16 mac layer is implemented in mac-802_16.{h,cc}
and all the packet types needed are defined in packet-
802_16.{h,cc} and the defined packets should also be
included in ~/ns-2.32/common/packet.h. (.h=header
files, .cc=c++ files)

Priority queue: In the BS or SS, the packets that come from
the upper layer will be prior delivered to Priority().
According to the TCID and its service type: UGS(5), rtPS(4),
ertPS(3), nrtPS(2), BE(1), the Priority() will make a
corresponding priority classification.

#The queuing function for different QoS traffic are
implemented by adding necessary lines to /bin/nsallinone-
2.32/ns-2.32/queue/queue.h

Scheduler: The Scheduler() function is in charge of
selecting queued MSDUs according to the admitted
bandwidth. The selection policy of the scheduler in the
designed module uses the weighted Round-Robin method.

Fragmentation/Packing: This function will handle addition
of Generic MAC header to payload depending of QoS. This
section will handle transmission of the data also.

Timer Function: The 802.16 Timer class inherits the
Handler class with three important functions:

• The start() is used to trigger the timer to start.

• The stop() is used to stop the timer if the event happened
before expiration.

• The handle() is used to trigger event while time runs out.

The Timer class is implemented in timer-802.16.h and
timer-802.16.cc within the WiMAX module according to
the ns-documentation [6]. To be noted: Timer classes must
be derived from an abstract base class TimerHandler defined
in ~ns-2.32/timer-handler.h

Table 1. shows some of the important MAC layer and
System time parameters used in the module.

Table. 1. Some of the important parameters used in the
module

MAC layer Parameters

DL/UL Ratio '3' : '2'

CWmin [contention window size] 32

Cwmax 1024

Max. no. of ranging retry 10

Max. no. of bandwidth req. retry 10

System time parameters

Spectrum 5.0 GHz

Bandwidth 20 MHz 20 MHz

OFDMA symbol time 100.84 μs

OFDMA frame length 5 ms

DCD/UCD period(downlink/uplink channel
descriptor) 10 μs

Ranging interval 1210.08 μs

Bandwidth request interval 1210.08 μs

TTG 200 μs

RTG (Receive transmit gap) 200 μs

147

Zebin, Rafique et al.

Fig. 3. The relationship between WiMAX module and the
legacy ns-2 module[1]

IV. Simulation Scenario & Result Analysis

During this course of work we have simulated PMP
WiMAX environments with different number of subscriber
stations and studied responses of various parameters.

A. Topology/Scenario writing in tcl scripts in ns:
 Different Environment parameters can be set in a

tcl file like “example.tcl” as follows:
Set val(chan) Channel/WirelessChannel;

channel type
set val(prop) Propagation/TwoRayGround
; #radio-propagation model
set val(netif) Phy/WirelessPhy ;
#network interface
set val(mac) Mac/802_16 ;

MAC type
set val(ifq) Queue/DropTail/PriQueue ;

interface queue type
set val(ant) Antenna/OmniAntenna ;

antenna model
set val(ifqlen) 50 ;

max packet size
set val(nn) 6 ;

no of mobile SS
set val(rp) DSDV ;
routing protocol
set val(stop) 15.0 ;

simulation end time

 Connection type between different nodes can be
provided like follows:

set udp3 [new Agent/UDP];

$ns attach-agent $node_(4) $udp3; # connection type
for node 3 to node 0(UGS-UDP)
set cbr3 [new Application/Traffic/UGS];
$cbr3 attach-agent $udp3
$cbr3 set type_ UGS
$cbr3 set packet_size_ 1000;
$cbr3 set rate_ 512Kb
$cbr3 set random_ false
$ns at 3.0 "$cbr3 start"

$ns at 10.0 "$cbr3 stop"

Further detail on topology creation/tcl script writing can be
found in reference [9].

B. Performance Analysis:

We have studied different cases to test the performance of
the implemented module. Some of these are presented
below:

Observation 1. Fig 4, shows the throughput as a function of
simulated time. The simulation time persists for 15 seconds.
All the traffic were continuously generated throughout the
simulation time. We can see that the curve of the obtained
throughput of the system rises with the increase of the
simulation time.

Fig 4. The System throughput versus simulation time in 15
seconds

Fig 5. Variation in average MAC layer access delay for different
number of SSs(PMP)

The reason why the system throughput is low in the early
simulation time is that SSs spend an amount of time in
dealing with the initial ranging process and their bandwidth
request process. It will then follow the random backoff
mechanism with an initial backoff countdown interval and
stand on the random backoff approach. Therefore, the
system throughput is not revealed well. Finally, we can see
that the system throughput will reach around 2 Mbps in the
end of the simulation time.

Observation 2. From the bar diagram shown in Fig 5, we
can see that the delay time will increase with increasing
number of SSs. The MAC delay is a result from the collision
of initial ranging and the bandwidth request. After the
bandwidth request, the delay will become de balanced since
the BS will arrange the transmission time in the simulation.
The scheduling of different traffic service types will mainly

148

Implementation and Performance Analysis of a WiMAX Module in ns-2

affect the MAC delay because of limited spectral resource.
Using the weighted Round Robin (WRR) to access the
priority queues is not a better way to schedule the
transmission and it can be replaced to a better scheduler (We
are trying on Earliest deadline first / Weighted fair queuing
as uplink scheduler).

To be noted here, the tracegraph tool used with MATLAB
should be modified to provide graphical results from large
trace files.

Observation 3. The WRR algorithm indicates very high
average delay for the ertPS class except when the
concentration of ertPS SSs is the highest (Fig 6). With a
high concentration of ertPS SSs, the weight assigned to
them is high resulting in more bandwidth allocated to the
SSs. The Queuing Algorithm indicates a high average delay
hence the packet loss for the ertPS SSs when their
concentration is low.

Observation 4. Though ns module we used and NCTUns
WiMAX implemented module uses different way of
designing - direct scenario comparison is not possible[13].
In Fig 7, an optimal comparison in the simulation processing
time and memory usage of both the simulators is shown.
Since NCTUns deals with higher graphics it takes greater
execution time and uses more memory than ns.

Fig 6. Packet loss variation with QoS based SS ratio

Fig 7. Execution time comparison between ns and NCTUns
Simulation

V. Conclusion & Future Work Plan

This paper presents a detailed description and
implementation of the WiMAX simulation module for ns-2.
The module is based on the IEEE 802.16-2004 standard and
the legacy ns-2 version 2.32. This module deals with a basic
point-to-multipoint (PMP) IEEE 802.16 function. It

comprises fundamental functions of the service-specific
convergence sublayer (CS), the MAC common part sublayer
(CPS), and the PHY layer. Traffic generators for different
QoS classes (UGS, rtPS, nrtPS, BE) are also included in this
module.

We hope that this preliminary work will help amateur ns
workers to get started and use ns in network simulation of
any supported form.

In future we hope to work on efficient bandwidth
management algorithm and scheduler algorithms to have
more resemblance to real networks. Moreover we hope to
expand a fully workable mobile WiMAX IEEE802.16e
module in ns and NCTUns. Also hope to work on Mobile IP
and satellite modules in ns and NCTUns.

1. J.Chen, C.Wang, F.Tsai, C.Chang, S.Liu, J.Guo, W.Lien,

J.Sum, and C.Hung, (Chen et.al,2006)“The design and
implementation of WiMAX module for ns-2 simulator”
Proceedings of the 2006 Workshop on Ns-2: the IP Network
Simulator.(http://ndsl.csie.cgu.edu.tw)

2. Intel White paper, Wi-Fi and WiMAX Solutions:
“Understanding Wi-Fi and WiMAX as Metro-Access
Solutions”.
(http://www.intel.com/netcomms/technologies/wimax/30447
1.pdf)

3. Documentation of IEEE 802.16-2004, “IEEE Standard for
Local and Metropolitan Area Networks – Part 16: Air
Interface for Fixed Broadband Wireless Access
Systems”,2004.

4. Pratik Dhrona, “A Performance Study of Uplink Scheduling
Algorithms in Point to Multipoint WiMAX Networks”.Report
presented at Queens University, Canada,2007.

5. Amalia Roca, “Implementation of a WiMAX simulator in
Simulink”, 2007, Castellón - Spain.

6. The Network Simulator NS-2 NIST add-on IEEE 802.16
model (MAC+PHY), 2007

7. S. Kim and I. Yeom, “TCP-aware Uplink Scheduling in IEEE
802.16,” Communications Letters. 2006.

8. WiMAX Forum Documentation,” Mobile WiMAX: A
Technical Overview and Performance Evaluation”,2006.

9. http://www.isi.edu/nsnam/ns/ns_doc.pdf,
(ns-2 documentation; collected at March, 2008)

10. http://www.sourceforge.net.
11. http://NSL.csie.nctu.edu.tw/nctuns.html.: For NCTUns

download and user/developer manual.
12. http://www.tracegraph.com,

http://www.geocities.com/tracegraph
13. Shiang-Ming Huang,Ya-Chin Sung, “NCTUns Simulation

Tool for WiMAX Modeling”,2007.
14. Jeffry G. Andrews, Arunabha Ghosh and Rias Muhamed

“Fundamental of WiMAX, Understanding broadband wireless
networking”,1st Edition,2007, 8-31.

15. K.Lee, J.Hahm and Y.Kim, “QoS Application Method in
Portable Internet”, Proceedings of Asia-Pacific Conference on
Communications, 2005, 237-239.

149

