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Abstract

This article describes matrix method of designing simultaneous confounding of two factorial effects in a n3 - factorial experiment. It

becomes easier to construct the design of simultaneous confounding for a n3 - factorial experiment especially when the number of factors
as well as the number of levels becomes larger.

I. Introduction
The practical works with factorial experiment become
troublesome especially when the number of factors as well
as the number of levels of each of the factors is large. This
trouble becomes difficult if we have no required number of
homogeneous plots in practice. In such situation, we are
bound to use a limited number of homogeneous plots to
analyze the factorial effects. As a result, some factorial
effects or interactions will be mixed up with block effect,
i.e. confounded. Since there is no way to avoid this, the
higher order interaction effects are considered to be
confounded. We usually consider one or two higher order
interaction effects to be confounded to perform analysis
efficiently.

Bose and Kishan (1940), Bose (1947) described the
construction of np factorial designs using finite
geometries. The treatments are represented by n -tuples

),,( 1 naa  where ia are elements of )( pGF . The
method is available only when p is prime or prime power.

A system of simultaneous confounding in n2 factorial
experiment has been described, where an intrablock
subgroup is constructed with the common elements taken
from the factorial effects of two incomplete blocks, each
confounded with a single factorial effect (Kempthorne,
1947, 1952)1,2. Das (1964) described an equivalent method
of Bose in which some of the treatment factors are
designated as basic factors and the others as added factors.
Levels of added factors are derived by combination of the
levels of the basic factors over )( pGF . White and
Hultquist (1965) extended the field method to designs with
numbers of levels of treatment factors. John and Dean
(1975) described the construction of a particular class of
single replicate block designs, which they call generalized
cyclic designs. The essential feature of the method is that
the n -tuples giving the treatments of a particular block
constitute an Abelian group, the intrablock subgroup.
Patterson (1976) described a general computer algorithm,
called DSIGN, in which levels of treatment factors are
derived by linear combinations of levels of plot and block
factors. The method provides finite-field, generalized cyclic
and other designs. Mallick, S. A. (1973 & 1975)3, 4

developed two systems of designing factorial effects with
simultaneous confounding of two effects, one for a n3 and
the other for a n4 - factorial experiments. In all these
systems of simultaneous confounding, the design of

factorial effects was based on some manipulating manner,
selection by inspection the common elements (factorial
effects). Jalil, M. A. et al (1990) developed matrix method5

of designing a single factorial effect confounded in a nP -
factorial experiment, where the level combinations are
obtained by matrix operations of the levels. The present
work is also a matrix method of designing a n3 - factorial
experiment of simultaneous confounding of two factorial
effects.

II. Method

In the construction of a nP - factorial experiment with a
single factorial confounded, we can write the level
combinations by the equation described below (Jalil, M. A.
et al 1990).

]M,,M,M,M[M 1p210   ; (1)

where incomplete blocks )1p(,,2,1,0u;Mu   is
given by:
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each is a column vector of dimension np .

);1p(,,2,1,0u   );1n(,,3,2,1i  

);1p(,,2,1,0j   with the restriction that 1ji  ;

mI : sum vector of dimension m ;

 jj p}p{ times repetition of the elements of iV in
ascending ordered levels; and

]a,,a,a[a up2u1uu   is called the adjustment vector.

From the equation matrices (Eq. 1), 0M is called the key
block (incomplete) of a single factorial effect confounded
design. For a plan of simultaneous confounding of two
factorial effects in a n3 - factorial experiment, we are to
follow the following steps.

Step 1.

Find the independent key blocks for the factorial effects to
be confounded simultaneously using Equation (1). Let these
key blocks be denoted by, 0M , represents the level
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combinations of key block for the first confounded factorial
effect and 0M represents the level combinations of key
block for the second confounded factorial effect.

Step 2.

Find the common elements of level combinations (row
vectors) of these two key blocks and form a matrix, can be
denoted by 1B , called the key intrablock subgroups of level
combinations of a two factorial effects confounded
simultaneously of a n3 factorial experiment. It can be seen
that the key intrablock subgroups contains the lowest level
combination for all the factors.

Step 3.

Proceeding column wise we will get the second intrablock
subgroup by adding the level combination )010.(.. with
each of the elements of key intrablock subgroup. Similarly,
by adding the level combination )020.(.. (if it is absent
in the second intrablock subgroup), with each of the
elements of key intrablock, we get the third intrablock
subgroup.

Step 4.
Proceeding row wise we will get the fourth, fifth and sixth
intrablock subgroups by adding the vector )100.(.. with
each of the vector elements of key, second and third
intrablock subgroups. In the same manner, we will get the
seventh, eighth and ninth intrablock subgroups by adding
the vector )200.(.. with each of the vector elements in
the key, second and third intrablock subgroups. Finally, we
get all nine intrablock subgroups, each of the intrablock
subgroups is an incomplete block of a n3 - factorial
experiment confounded simultaneously with two factorial
effects.

The method is illustrated with an example described in the
section below.

Example. Suppose we are to construct the layout of 43 -
factorial experiment where the factorial effects ABCD and

2DABC are confounded simultaneously.

The plan is given by matrix, 1227210 ]MMM[M  ;

2,1,0u];a}3{V}3{V}3{V[M u
2

3
1

2
0

1u  ; with

1279991 ]I2I1I0[1}1{V  ;

1273332 ]I2I1I0[3}3{V  and

1271113 ]I2I1I0[9}9{V  .

The adjustment vector, ]aaa[a 27u2u1uu   could be
obtained by solving the symbolic equation correspond to the
factorial effect to be confounded. Using the above method
(Jalil, M. A. et al), we can find the key block 0M , where
the factorial effect ABCD is to be confounded as follows.

Step 1.

The matrices 0M and 0M are the key blocks confounded

with ABCD and 2CDAB in 43 - factorial experiments.
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Step 2. Select the common vector elements from 0M and

0M , we have,
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Step 3. Add )0100( to each of the vector elements of the
key intrablock subgroup, we get,
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To obtain the third intrablock 3B , add the vector
)0200( to each of the vector elements of the key

intrablock subgroup. Thus,
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Step 4. We can find the fourth block 4B by adding the
vector element )1000( with each of the vector elements
of the key intrablock 1B ; the intrablock 5B can be found
by adding the vector element )1000( with each of the
vector elements of  the second block 2B . Similarly, we can
find the sixth block by adding the vector element )1000(
with each of the vector elements of the third block 3B .
Thus,

4B is obtained by adding the vector )1000( to each of
the vector elements of 1B ;

5B is obtained by adding the vector )1000( to each of
the vector elements of 2B ;

6B is obtained by adding the vector )1000( to each of
the vector elements of 3B ; and

7B is obtained by adding the vector )2000( to each of
the vector elements of 1B ;

8B is obtained by adding the vector )2000( to each of
the vector elements of 2B ;

9B is obtained by adding the vector )2000( to each of
the vector elements of 3B ;

Thus, we have the complete layout of nine intrablock
subgroups as shown by,
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It is easy to verify that,
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)BBB(.Vs)BBB(.Vs)BBB( 987654321 
; confounds the 1st effect, ABCD ;

)BBB(.Vs)BBB(.Vs)BBB( 963852741 

; confounds the 2nd effect, 2DABC ;

)BBB(.Vs)BBB(.Vs)BBB( 843762951 
; confounds the 1st generalized effect,

ABCDABCABCD 2  ; and

)BBB(.Vs)BBB(.Vs)BBB( 753942861 
; confounds the 2nd generalized effect,

D)DABC(DABC 22  .

Conclusion

In this article, we have introduced a method of simultaneous
confounding in a n3 factorial experiment using matrix
algebra. It becomes easier and rewarding than any methods
available in the construction of simultaneous confounding
of n3 factorial experiments. The method is restricted to
np factorial experiment when 3p .
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