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Abstract
The statistical analysis of lifetime or survival data has become a topic of considerable interest of statisticians. The field has expanded
rapidly in recent years. In this study, we consider three different approaches to survival analysis. The Kaplan-Meier method as a non-
parametric method, Cox’s proportional hazards model as a semi-parametric method and accelerated failure time model as a parametric
method have been used in this study to analyze the infant mortality data of Bangladesh Demographic Health Survey (BDHS) 2004 to
assess the influence of several factors like sex of child, mother’s age, mother’s education, birth order and type of place of residence on
infant survival. It has been found that all these factors have significant influence on infant mortality.

I. Introduction

Survival analysis deals with time until an event occurs. In
the current case, the event is death. Survival data can take so
many different forms such as censored, uncensored repeated
events, multiple states, clustered etc. Censoring is a
mechanism for which survival data are different from usual
data. It occurs when one has some information about
individual survival time, but one doesn’t know the survival
time exactly. One way to examine the relationship of
explanatory variables to life time is through a regression
model in which life time depends upon the explanatory
variables. This involves specifying a model for the
contribution of survival time given covariates. There are
many approaches to regression analysis for survival time
data. One employs parametric families of lifetime
distributions and extends model such as the exponential,
Weibull, and lognormal model to include explanatory
variable. Another approach is distribution free and assumes
less about the underlying distribution than do the parametric
methods. One such model is proportional hazards model. A
proportional hazard family is a class of model with the
property that different individuals have hazard functions,
which are proportional to one another. The Cox’s
proportional hazards model is usually in terms of the
hazards model formula. This model gives an expression for
the hazard at a specific time for an individual with a given
specification of a set of explanatory variables. Cox and
Oakes (1984) and Kalbfleisch and Prentice (1980) provided
the details introduction to standard hazards model developed
initially by Cox (1972). One can use a parametric model if
the failure time follows a known parametric model. Thus if
the distribution is unknown as is typically the case, the
Cox’s model will give reliable enough result. So that it is a
safe choice of model and the user does not need to worry
about whether the wrong parametric model is chosen.

II. Objectives of the Study

Determination of relative contribution of different risk
factors on infant mortality and the comparison of different
survival methods are the two main goals of this study.

III. Data and Variables

The data from Bangladesh Demographic and Health Survey
(BDHS), 2004 have been used here. This study focused on
children under one year of age called infant. Five
explanatory variables for infant mortality have been
selected for evaluation. These are:

 Mother's age at birth of the index child.
 Birth order of the index.
 Mother's education.
 Sex of the index child.
 Type of place of residence.

IV. Methodology

In this study, mortality is defined as the length of the
interval between the birth of the child and the time of
interview if the child is alive until the survey is conducted,
otherwise the age at death is considered. Total subsequent
mortality in this one-year period amounted to 1,412 (about
42 per cent of the total). The estimate of proportion of
infant died subsequent to alive was obtained by product
limit method. The estimate for median birth intervals were
then obtain on the basis of P-L estimate for the survival
function to take account of censoring (the case is alive).
The advantage of using the P-L method is that censoring
is taking into account in estimating the survivor
functions. The P-L method is utilized in this study to
take account of the issue of censoring in infant mortality.

The P-L method of the survival function may be defined as
follows:

where,

jd is the number of infant died at time .

jn is the number of infant at risk of being died and jt ,
denotes the time since the failure of a child.

Cox’s Proportional Hazards Model

The Cox’s proportional hazards model is the most popular
model for describing the relationship between risk factors
and survival time. This model has been employed here to
explore the effects of risk factors on survival. In 1972 Cox
proposed the most popular and flexible proportional hazards
model where the hazard function at time t for an individual
with covariate vector x is given as

h(t; x) = h0 (t) eβx (2.1)

where h0(t) is an arbitrary unspecified baseline hazard
function for continuous T,  i.e., h0(t) be the value of hazard
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function with x = 0 and β = ).......,,,( 21 p be the
regression co-efficient  corresponding to the covariate
vector x=(x1, x2, . . . , xp). This proportional hazards model
is non-parametric in the sense that it involves an unspecified
function in the form of an arbitrary baseline hazard function.

Accelerated Failure Time Regression Model

Accelerated failure time (AFT) model is a parametric model
that provides an alternative to the commonly-used
proportional hazards models. Whereas a proportional
hazards model assumes that the effect of a covariate is to
multiply the hazard by some constant, an AFT model
assumes that the effect of a covariate is to multiply the
predicted event time by some constant. AFT models can
therefore be framed as linear models for the logarithm of the
survival time. To be used in an AFT model, a distribution
must have a parameterization that includes a scale
parameter. The logarithm of the scale parameter is then
modeled as a linear function of the covariates. Location-
scale distribution has survival function of the form,

)(),,( 0 b
uySbuyS 

 ;  y (2.2)

where )(  uu is a location parameter, b>0 is a

scale parameter, and ()0S is a fully specified survivor

function defined on ),(  . If T is a life time variable

and Y=log T has the distribution (2.2) then it is to be said
that T has a log-location distribution. The survivor function
T may be written as
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where, )exp(u , 1 b and for  w0 ,

)(log00 wSS  . The weibull, loglogistic and lognormal
distribution are all of this form; the corresponding location-
scale parameter distributions of Y are the extreme value,
logistic and normal respectively.

Log-location-scale distributions are the most widely used
parametric lifetime models and regression models in which
u (and sometimes b) in (2.2) are functions of covariates are
of fundamental importance in both parametric and semi-
parametric frameworks. All these methodology were
implemented by using statistical software SPSS and R.

V. Analysis

Kaplan-Meier Estimate

In the first stage of the analysis, Kaplan-Meier (K-M)
approach is used to estimate the proportion of survived
infants.

Table. 1. Kaplan-Meier estimate of the probability of infant death by different demographic and socio-economic
characteristics.

Time Sex of
Child

Mother’s Age Birth Order Type of Place of
Residence

Mother’s
Education

Boy Girl Under
20

20
to
30

30
to
40

More
than
40

First
child Others Rural Urban

No
edu-
cation

Pri-
mary

Sec-
ondary Higher

≥1 0.9 .92 .99 .95 .85 .84 .89 .92 .91 .92 .87 .92 .97 .99
≥2 .86 .89 .99 .92 0.8 .75 .86 .88 .87 .88 .81 .89 .96 .97
≥3 0.8 .83 .98 0.9 .71 .63 .79 .83 .81 .82 .74 .83 .94 .96
≥4 .76 .81 .98 .89 .66 .58 .75 0.8 .78 0.8 .69 0.8 .93 .95
≥5 .72 .78 .97 .87 .61 .52 .71 .77 .75 .76 .65 .76 .91 .94
≥6 .67 .73 .97 .84 .55 .42 .67 .71 0.7 .72 .59 .72 .88 .94
≥7 .64 .71 .96 .83 .52 .37 .64 .69 .67 .68 .56 .69 .87 .93
≥8 .61 .68 .96 .81 .48 .33 .61 .66 .64 .66 .52 .67 .85 .93
≥9 .58 .65 .96 0.8 .45 .27 .58 .63 .61 .63 .49 .64 .83 .93

≥10 .56 .62 .96 .79 .43 .23 .56 0.6 .59 .59 .46 .62 .82 .93

≥11 .54 0.6 .95 .77 .41 0.2 .53 .58 .57 .56 .43 .59 0.8 .93
≥12 .49 .53 .95 .75 .36 0.1 .47 .52 .51 .51 .35 .54 .79 .93

It reveals from the table 1 that as age increases probability
of infant surviving decreases. The probability of surviving is
more among girls than those of boys. Survival probability
decreases with the increase in mother’s age. Children of
young mother exhibit higher survival probabilities. Children
whose birth order is second or higher survive longer than
children with first birth order.  Children of urban area show
higher survival probability than children of rural area. It is
also seen that survival probabilities increase with the

increase of level of mother’s education

In the second stage of the analysis, Cox’s proportional
hazards model is used. The purpose of this model is to show
how mortality depends upon different factors. The table 2
gives the coefficients of hazards ratio using Cox’s
proportional hazards model. The estimated hazard ratio
gives how much a level of a covariate is at risk relative to
the reference category.
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Table. 2. The coefficients and P-values for different levels of
covariates using Cox’s proportional hazards model

Covariate Levels Estimated
Hazard Ratio

P-value

Mother’s age 20 to 30 7.7 0
30 to 40 25.59 0

>40 42.29 0
Sex of Child Boy 1.14 024.1 e
Birth Order ≥2 0.44 0
Mother’s
Education

Primary 0.84 032.6 e
Secondary 0.52 108.1 e

Higher 0.13 080.2 e

The P-values indicate that all the covariates are highly
significant. The hazard ratio 1.44 for boy means that the
hazard rate for boy is 1.44 times of the girl. As mother’s age
increases hazard ratio decreases. It is also seen that
advancement in mother’s education decreases hazard of
children. Accelerated Failure Time Regression Model

A technique closely related to P-P and Q-Q plot is used with
parametric models for which the survivor function or
distribution function can be “linearized”. This means that
some transform of S(t;θ) is a linear function of t or of some
function of t, that is, g1[S(t;θ)] is a linear function of g2(t)
for some function g1 and g2.The idea is then plot g1(Ŝ(t))
versus g2(t); if the parametric family is appropriate the result
should be roughly linear. It has been found that weibull
distribution fits the data.

Table. 3. The coefficients and related p-values obtained from accelerated failure time model

Categories for mother’s age are highly significant. The
negative values of the coefficients indicate survival
probability of children decreases comparing to the children
of mother’s, aged less than 20 years. The survival
probability of a boy is less than a girl. The coefficient value
0.66 means that the survival probability of the infants with
birth order 2 or more is more than the infants with birth
order 1. It is also seen that with the rise in level of mother’s
education, survival probability of infants also increases.

VI. Discussion and Conclusion
This study provides some empirical evidence for
association between some selected explanatory variables
and infant mortality. Among the five explanatory variables
that are examined, the mother’s education seems to have a
very strong effect on survival status of the infants. Other
explanatory variables, such as age of the mother, sex of the
child, type of place of residence and birth order, also have
significant influence on infant mortality.
Among the three methods, the non-parametric Kaplan-
Meier method gives the comparison of survival probability
within several groups or categories of a covariate. It is
very much useful to assess which distribution will fit the
data even checking the assumptions of the covariates for
Cox’s proportional hazards model. Its main problem is that
it can’t take more than one covariate at a time to analyze.
On the other hand, it is easy and simple compared to other
survival methods. It is also robust and closely approximate
to parametric model. It gives regression coefficients,
adjusted survival curves and hazards ratios without
specifying the base-line hazard function. It gives hazards

ratio which provides information that how much one
category is in risk to failure than the other category. The
parametric AFT model is the best of all if the data fit any
distribution.
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Covariate Levels Coefficients P-value
Mother’s age 20 to 30 -1.68 8.75 e-19

30 to 40 -2.66 2.40 e-43

>40 -3.04 1.68 e-55

Sex of child Boy -0.12 8.56 e-03

Birth order ≥2 0.66 6.42 e-42

Type of place of residence Urban -0.04 4.78 e01

Mother’s education Primary 0.13 8.60 e-03

Secondary 0.54 4.24 e-10

Higher 1.64 4.39 e08


