
Dhaka Univ. J. Sci. 58(2): 219-223, 2010 (July)

Generalized Linear Mixed Models for Longitudinal Data Analysis: An Application to
Maternal Morbidity Data

Muhammad Abu Shadeque Mullah, Nabila Parveen and M. Zakir Hossain
Department of Statistics, Biostatistics and Informatics, Dhaka University, Dhaka-1000, Bangladesh

Received on 11. 08. 2009. Accepted for Publication on 29. 12. 2009

Abstract
This article discusses the application of Generalized Linear Mixed Models (GLMM) in which heterogeneity in regression parameters is
explicitly modelled in order to analyze the longitudinal data related to the maternal morbidity. The most commonly used model selection
criterion, Akaike’s Information Criterion (AIC) has been used to select important covariates associated with the pregnancy related
complications of Bangladeshi women. For testing the variance component in generalized linear mixed models, Likelihood Ratio Test (LRT)
has been performed.
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I. Introduction
Although reproductive health care is a highly focused issue
in the development of a country, millions of women
experience life-threatening and other health related
complications during pregnancy and post-partum period in
developing countries like Bangladesh. In Bangladesh,
around 16000 maternal deaths occurred due to pregnancy
and delivery related problems in the year 2000 (Latif et al.1,
2008). Poor access to services, low quality of care, high rate
of maternal mortality and poor status of child health still
remain as challenges of the health sector.
Despite pregnancy and delivery related complicacies are
very common to Bangladeshi women, not too many
attentions have been paid by the researchers in this issue. In
recent times, a non-governmental organization, Bangladesh
Institute of Research for Promotion of Essential and
Reproductive Health Technologies (BIRPERHT) carried
out a prospective survey on maternal morbidity in
Bangladesh where the selected women were followed
during the pregnancy and post-partum period. Along with
important pregnancy-related variables, presence/absence of
any complication during pregnancy is recorded over the
follow-up period for each of the selected women.
As repeated measurements were made from each woman
over different time points, the data can be phrased as
longitudinal data. Longitudinal data are characterized by the
fact that repeated observations for a subject tend to be
correlated. This correlation presents additional prospects
and challenges for analysis. There are two distinct
approaches to longitudinal data analysis namely; subject-
specific approach and population-averaged approach. In the
"subject-specific" (SS) approach the heterogeneity across
subjects can be explicitly modelled. The mixed model is an
example where the subject-specific effects are assumed to
follow a parametric distribution across the population
(Zeger et al.2, 1988). Mixed linear models (Laird and
Ware3, 1982; Ware4, 1985) for continuous longitudinal data
are in common use. Mixed generalized linear models for
non-normal outcomes have recently become a research
focus (See Stiratelli, Laird, and Ware5, 1984; Anderson and
Aitkin6, 1985; and Gilmour, Anderson, and Rae7, 1985 for
applications to binomial data).
On the other hand, the population-averaged response can be
modelled as a function of covariates without explicitly
accounting for subject to subject heterogeneity. The
regression coefficients have interpretation for the

population rather than for any individual and hence the term
"population-averaged"(PA) model (also known as marginal
model) in this case. The principal distinction between SS
and PA models is whether the regression coefficients
describe an individual's or the average population response
to changing covariates. SS models are desirable when the
response for an individual rather than for the population is
the focus.
In case of SS approach, models can be estimated by two
distinct techniques: likelihood based and estimating
equation based methods. The likelihood based methods
require complete specification of the joint distribution of the
multivariate responses, whereas the estimating equation
based methods can be employed when joint distribution is
not fully specified. Zeger et al.2, 1988 described how
generalized estimating equation (GEE) methodology, an
estimating equation based method can be applied to
estimate SS models.The present study considers the SS
approach where model has been estimated via likelihood
based method.
Model selection is an important task of data analysis which
leads to select a “best” statistical model from a set of
potential models, given data. That is selecting the best
subset of the covariates from the available covariates in the
data. Usually model selection is done by using a specific
criterion. For likelihood-based methods, Akaike’s
Information Criterion (AIC) (Akaike8, 1973) is widely used
as a model selection criterion.
The main focus of the present study is to select the best
models from a given set of covariates when the outcome is
multivariate binary. The generalized linear mixed model is
considered for modeling multivariate binary response and
Akaike’s information criterion is used to select the best
subset of the available covariates. The test of homogeneity
for the generalized linear model with random intercept for
the best selected model has been performed by using
likelihood ratio test applied to maternal morbidity data.

II. Data and Variables
The present study is based on the data from the maternal
morbidity survey in Bangladesh conducted by the
Bangladesh Institute of Research for Promotion of Essential
and Reproductive Health Technologies (BIRPERHT)
during the period of November 1992 to December 1993. A
number of papers have been published using this data set
(See Islam et al.9, 2004; Gulshan et al.10, 2005; Chakraborty
et al.11, 2003 and Latif et al.1, 2008).
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In the survey, a multistage sampling design was used where
in the first stage the districts were randomly selected in such
a way that exactly one district was chosen from each
division. One thana was randomly selected from each of the
chosen districts in the second stage and two unions were
randomly selected from each of the selected thanas in the
third stage. The sample comprised of all the pregnant
women of duration at most six months from the selected
unions. A total of 1020 selected pregnant women were
followed till 90 days after delivery to collect information
regarding socio-economic and demographic characteristics,
pregnancy related care and practice, morbidity during the
period of follow-up and in the past, complications at the
time of delivery and during the postpartum period, etc.
With a view to identify the important factors associated
with pregnancy related complications, the present study
considered the first four consecutive antenatal follow-ups
for 549 pregnant women. To identify the morbid cases in
the pregnancy period we have considered at least one of the
major life-threatening complications namely; haemorrhage,
oedema, excessive vomiting, and fits or convulsion. Thus
the response variable is considered as binary taking the
value 1 if at least one of the complications was present.
Notationally,

y = 1, if the woman suffers from at least one of the
major complications

0, otherwise.
In the midst of the available covariates, only six important
covariates are considered which are: educational level of the
respondents (EDLV), age at marriage (AGEM), economic
status (ECOST), desired the index pregnancy (DIP), food
supplement (FSUP), and gainful employment (GEMP). All
these covariates are coded as binary with the reference
categories, never attended school for educational level, 15
years or less for age at marriage, less than average for
economic status, no for desired index pregnancy, food
supplement, and gainful employment respectively.

III. Methods
Generalized Linear Mixed Models
Let yit be the binary response and xit, a p × 1 vector of fixed
covariates at time t for woman i, where
t = 1, ..., ni and i = 1, ... ,n. If yi = (yi1, yi2, …. ,yini) is a
vector of correlated responses from the ith woman then to
analyze such correlated data, random subject (woman)
effects can be added into the regression model to account
for the correlation of the data. The resulting model is a
mixed model including the usual fixed effects for the
regressors plus the random effects. Here we assume that the
data for a single woman are independent observations from
a distribution belonging to the exponential family, but that
the regression coefficients can vary from woman to woman
according to a random effects distribution, denoted by F.
That is, conditional on the random effects, it is assumed that
the responses for a single subject are independent
observations from a distribution belonging to the
exponential family. Let zit be a q x 1 vector of covariates
(typically a subset of xit) associated with a q x 1 random
effect, bi, and let the conditional mean )( iitit byEu  .

Under the mixed GLM, the responses for subject i are
assumed to satisfy

iititit bzxug  )( , ).()|var( itiit uvby 

where bi is an independent observation from a mixture
distribution, F. The functions g and v are referred to as the
"link" and "variance" functions, respectively.
A random-intercept model, which is the simplest mixed
model, augments the linear predictor with a single random
effect for subject i,

iitit bxug  )(

where bi is the random effect (one for each subject). These
random effects represent the influence of subject i on
his/her repeated observations that is not captured by the
observed covariates. These are treated as random effects
because the sampled subjects are thought to represent a
population of subjects, and they are usually assumed to be
distributed as ),0( 2

bN  . The parameter 2
b indicates the

variance in the population distribution, and therefore the
degree of heterogeneity of subjects. The objective of
analysis is to estimate the fixed effects coefficients, β,
parameters of F, and possibly the scale parameter,  .

Dichotomous Outcomes
The mixed-effects logistic regression model is a common
choice for analysis of multilevel dichotomous data and is
arguably the most popular GLMM. In the GLMM context,
this model utilizes the logit link, namely

iitit
it

it
itit bβxη
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Here, the conditional expectation
)( iitit byEu  equals )1( iit byP  , namely, the

conditional probability of a response given the random
effects (and covariate values).
This model can also be written as

)()()1( 11
iititiit bxggbyP   

where the inverse link function )(1
itg  is the logistic

cumulative distribution function (cdf), namely
11 )]exp(1[)(   ititg 

The probit model, which is based on the standard normal
distribution, is often proposed as an alternative to the
logistic model (Gibbons and Bock,12 1987). For the probit
model, the normal cdf and pdf replace their logistic
counterparts.

Model Specification
Since yit is a binary response, taking values of 0 or 1, a
logistic mixed effects model for yit has been considered
which is given by the following three-part specification:

1. Conditional on a single random effect bi, the yit are
independent and have a Bernoulli (pit) distribution,
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with )}|(1){|()|var( iitiitiit byEbyEby  ,

(i.e., 1 ).

2. The conditional mean of yit depend upon fixed and
random effects via the following linear predictor:

iitiititit bxbzx   ,

where zit = 1 for all i = 1,2,…,n(=549), and t = 1,
…, 4, with
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That is, the conditional mean of yit is related to the linear
predictor by a logit link function.

3. The single random effects bi is assumed to have a
univariate normal distribution, with zero mean and
variance 2

b .

Estimation
With generalized linear mixed effects models the joint
distributions of both the vector of responses and the vector
of random effects are fully specified. As a result, we can
base estimation and inference on the likelihood function.
Given the three-part specification of a generalized linear
mixed effects model, the joint probability for yi and bi can
be expressed as:
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The likelihood function is
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The ML estimates of  and 2
b are simply those values of

 and 2
b that maximize this likelihood function. However,

the likelihood function (2) cannot be simplified or evaluated
in closed form as this integral can not be evaluated in closed
form and hence maximizing values cannot be expressed in
closed form either. The integrals in the above equation are
well suited for evaluation with the aid of Gauss-Hermite
quadrature. As with any “automatic” numerical integration
method, there are situations in which Gauss-Hermite
quadrature for models like the logit-normal will give
inaccurate results (McCulloch13, 2003), generally having to
do with the placement of the evaluation points. An
improvement on simple Gauss-Hermite quadrature is
adaptive quadrature, as exemplified in SAS Proc
NLMIXED (SAS Institute, 2001) and Rabe-Hesketh et al.14

(2002), in which the point of evaluation of the integral is
“centered” in order to improve accuracy.
Akaike's Information Criterion
Akaike's Information Criterion (AIC) (Akaike8, 1973) is
very powerful and widely used model-selection criterion
based on the likelihood and asymptotic properties of the

maximum likelihood estimator (MLE). It was introduced as
an approximately unbiased estimator of the expected
Kullback-Leibler information of the fitted model. Suppose
D = )},{( iji xy  be the data at hand, where iy is the response

vector and ijx is a set of covariates. Also suppose we have a
candidate model M and the true model M* with log-
likelihood functions );( DL  and );( * DL  respectively,

where  and * are the corresponding regression
parameters. A well-known measure of separation between
two models is given by the Kullback- Leibler information
(Kullback and Leibler15, 1951), also known as the cross
entropy. The Kullback-Leibler information between M and
M* is

)],(2[),( *
*

0 DLEM   ,

where the expectation *ME is taken with respect to the true
model M*. From a set of candidate models, we would like
to choose the model with smallest ),( *

0  . However, in

practice, both  and * are unknown and, as such, we
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have to estimate ),( *
0  . AIC was motivated as an

asymptotically unbiased estimator of )],ˆ([ *
0* ME ,

where ̂ is the maximum likelihood estimator under any
competing model and the expectation is taken over the
random ̂ .Notationally,

pDLAIC 2);ˆ(2   , ……. (3)

where p is the dimension of  . Akaike proposed using AIC
as a model-selection criterion by selecting a model that
minimizes AIC as the “best” model.
The Likelihood Ratio Test for Variance Components in
GLMMs
In many situations, we are interested in testing whether the
between-subject variation is absent in the mixed effects
model. This is equivalent to testing variance component
equal to zero. That is, the hypothesis of interest is

0: 2
0 bH  against .0: 2

1 bH 

In a regular hypothesis testing setting, a likelihood ratio test
is the most commonly used test due to its desirable
properties and the fact that it is easy to construct.
The likelihood ratio test statistic is given by

)(2 01
2 llG  , ……. (4)

where ),ˆ(log 2
1 bLl  is the unconditional maximized

log likelihood and )0,~(log 2
0  bLl  is the

maximized log likelihood under 0: 2
0 bH  . Here,

2G follows chi-square distribution with 1 degree of
freedom.

IV. Results and Discussion
Choice of Best Models
An important objective of this paper is to select the best
model within mixed model setup using AIC.
All possible models that can be considered from the
selected six covariates are examined and the best models
with different number of covariates are shown in Table 1.
Among the six models with one covariate, the model with
DIP as the only covariate (Model I) is found to be the best
one because the corresponding AIC value is the smallest.
Among the 15 models with two covariates, Model II, which
includes DIP and EDLV as covariates, is the best choice.
For three covariates, the model with the covariates DIP,
EDLV, and GEMP is found to be the best one; we denote
this model as Model III. The best model with four
covariates (Model IV) includes the covariate FSUP in
addition to the covariates of Model III. For five covariates,
the best model includes the covariate AGEM in addition to
the covariates of Model IV. The only model with six
covariates is denoted as Model VI which contains all the
covariates that are considered in this study. Among all the
six models (Model I up to Model VI), Model II can be
considered as the best model because the corresponding
AIC value is the smallest.

Table.1. Best models with different number of covariates

Model Best Model With
Number of Variables

Selected Covariates AIC

I 1 DIP 744.3
II 2 EDLV ,DIP 743.2
III 3 EDLV, DIP , GEMP 745.1
IV 4 EDLV, FSUP, DIP ,GEMP 746.1
V 5 EDLV, AGEM, FSUP, DIP, GEMP 747.5
VI 6 EDLV, AGEM, ECOST, FSUP, DIP, GEMP 749.3

Analysis of Morbidity Data Using “Best” Selected Model
The ML estimates of the fixed effects and variance
component of the best model (Model II) are presented in
Table 2. These results indicate that the covariate DIP is
highly significant and that women’s unwillingness of being
pregnant is harmful, increasing the woman-specific rates of
having the pregnancy related complications during the
pregnancy period. More specifically, the odds of
experiencing pregnancy related complications is about 2 (or
1/e-.6162) times as high among the women who oppose to be
pregnant than those who support.
The other variable of the best model, education level, is
found to have a non-significant effect on pregnancy related
complications. Note that the variance of bi is correctly
estimated as evidenced by the very small standard error.
The estimate of the variance of bi, 48.2ˆ 2 b , indicates

that there is between-woman variability in experiencing the
pregnancy related complications.
These results are quite different from that obtained by Latif
et al1. (2008) using the same data but generalized estimating
equation approach. They found FSUP as the only significant
covariate irrespective of the choice of the correlation
structure under the GEE setup even though AGEM was
found to be significant (at 10 percent) only for unstructured
correlation structure.

Table. 2. Estimates of the parameters of Model II

Parameter Estimate Standard
Error P-value

Intercept -3.5826 0.3338 <.0001
DIP -0.6162 0.2966 0.0382
EDLV -0.4144 0.3027 0.1715

2ˆb 2.48 0.7517 0.0010
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Optimization Technique: Dual Quasi-Newton
Integration Method :    Adaptive Gaussian Quadrature
The likelihood ratio test for variance components in
generalized linear mixed model gives

)(2 01
2 llG  = 2[-368.1-(-383.15)] = 30.1

(P-value = 0.000).
This indicates that there is significant between-woman
variability in experiencing the complications during
pregnancy period and the use of generalized linear mixed
model instead of generalized linear model to analyze the
maternal morbidity data is appropriate.

V. Conclusion
Reproductive health care is a greatly focused issue in the
development of a country. Although pregnancy and delivery
related complicacies are very common to Bangladeshi
women, not too many studies have been conducted to
identify the important covariates associated with such
pregnancy related problems. The present study was aimed at
analysing the BIRPHERT data using the generalized linear
mixed model to identify the important covariates associated
with the maternal complications. Among the six covariates
we have considered in this analysis, educational level of the
respondents (EDLV) and desired the index pregnancy (DIP)
are found to be the best subset of the covariates among all
possible subsets of covariates. The analysis of the best
model shows that woman’s desireness regarding their
pregnancy has significant impact on major complicacies
during pregnancy. It is evident from the analysis that the
probability of developing some major complications during
pregnancy is smaller for women who wanted to have a baby
than those who did not, and as such, woman’s opinion
regarding pregnancy should essentially take into
consideration.
The covariate education level of the women has been
selected in the best model though not found to have a strong
significant effect on pregnancy related complications.
Previous studies show that female education plays an
important role in reducing maternal mortality, more
specifically, a low incidence of maternal morbidities was
found among the educated women (Choolani and Ratnam16,
1995). Chowdhury et al.17 (2007) examined the trends in
maternal mortality in Matlab, Bangladesh over 30 years and
revealed female education and poverty reduction are two
important variables in reducing the maternal mortality. Age
at marriage is also an important covariate for pregnancy
related studies in developing countries.
The likelihood ratio test for variance components in
generalized linear mixed model indicates that there is
significant between-woman variability in experiencing the
complications during pregnancy period and justifies the
application of generalized linear mixed model to analyze
the longitudinal data related to maternal morbidity.
The result of this study can be used in applied works in the
relevant areas. Furthermore, as the study is based on a large
number of data set, the findings can be used by Government
and Non-government organizations for public policy
formulations.
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