
Dhaka Univ. J. Sci. 58(2): 233-237, 2010 (July)

A Computer Technique for Sensitivity Analysis in Linear Programs
Roni Saha and M Babul Hasan

Department of Mathematics, Dhaka University, Dhaka - 1000, Bangladesh
Email: mbabulhasan@yahoo.com

Received on 26. 08. 2009. Accepted for Publication on 10. 03.2010.

Abstract
Sensitivity Analysis is a systematic study of how sensitive solutions are to (small) changes in the data. In our paper, we develop a
computer oriented method for analyzing sensitivity. This method shows the changes in optimal solution of a Linear Programming
problem for a small change in data values. A numerical example is illustrated to demonstrate our algorithm.

I. Introduction
Sensitivity Analysis (SA) is one of the great successes to
emerge from operations research and management
science. It is well developed and widely used. Linear
Programming (LP) problems in practice are often based
on numerical data that represent rough approximations of
quantities that are inherently difficult to estimate.
Because of this, most LP-based studies include a post
optimality investigation of how a change in the data
affects the solution. SA is the most helpful tool for this
purpose.

Linear Programs

We first briefly discuss the general LP problems.
Consider the standard LP problem as follows,

Maximize Z = cx (1.1)

subject to Ax = b (1.2)

x ≥ 0 (1.3)

Where A = (a1, a2, … , am, am+1, … , an) is an m × n
matrix, b є Rm, x, c є Rn. Let B = (b1, b2, … , bm) be any
non-singular sub-matrix of A and xB be the vector of
variables associated with the columns of B.

The general properties and solution procedures of LP
problems can be found in Kambo [5], Hasan [2]. We will
now concentrate our discussion into SA.

Revised Simplex Method

In real life the LP matrices are thin and sparse (there are
usually more columns than rows). According to the
characteristic of the LP problems and the way Simplex
Method (SM) works, it can easily be shown that a
significant amount of redundant information is generated
at each step. This necessitates extra computational effort
and computer storage. To overcome the drawback of the
standard method of pivoting, a computationally more
efficient procedure Revised Simplex Method (RSM) is
presented. The RSM is an implementation of the standard
SM that uses an abbreviated table, reconstructing only
that data from the complete simplex tables absolutely
necessary to perform the steps of the SM. RSM (more
efficient for computing) is now used in all commercially
available packages (e.g. IBM MPSX, CDC APEX III).

Sensitivity Analysis

Once the optimal solution to an LP problem has been
attained, it may be desirable to study how the current
solution changes when the parameters of the problem are
changed. The change in parameter of the problem may be
discrete or continuous. The study of the effect of discrete
changes in parameters on the optimal solution is called
SA. In analyzing output, SA is used to explore how
changes in the problem data might change the solution to
an LP, for example, how a change in production costs or
demand projections might affect a production schedule.
Because large-scale planning efforts often rely on large
amounts of data, much of which represents best-guess
estimates, the ability to undertake such SA is critical to
the acceptance of the methodology. Indeed, people who
are uncertain about data elements are often advised to use
SA to resolve the impact of uncertainty. When we use a
mathematical model to describe reality we must make
approximations. The world is more complicated than the
kinds of optimization problems that we are able to solve.
Our knowledge of the relevant technology may be
imprecise, forcing us to approximate data values. For this
reason Sensitivity Analysis is needed to apply in real life
models.

The basic idea is to be able to give answers to the
changes:

 Changing the Objective Function Coefficient of
a Nonbasic Variable.

 Changing the Objective Function Coefficient of
a Basic Variable.

 Changing the Right-Hand Side of a Constraint.

 Changing the Column of a Nonbasic Variable.

 Adding a New Activity.

Some Definitions

Objective Function

The linear function z = = c1x1 + c2x2 + … … …

+ cnxn which is to be maximized (or minimized) is called
objective function of the LP problem.

Roni Saha and M Babul Hasan

Constraints

The set of equations or inequalities is called the
constraints of the general LP problem. Ax (≤, =, ≥) b is
the set of constraints in the LP.

Feasible Solution
Any solution to an LP which also satisfies the
nonnegative restrictions of the problem is called a
feasible solution to the LP.

Basic Solution
A basic solution is a solution obtained by setting (n-m)
variables equal to zero and solving for the remaining m
variables, provided the determinant of the coefficient of
these m variables are non-zero. The m variables are called
basic variables.

Basic Feasible Solution
A basic feasible solution is a basic solution which also
satisfies the nonnegative restrictions xj ≥ 0; that is all
basic variables are nonnegative.

Optimal Solution
Any feasible solution which optimizes (minimizes or
maximizes) the objective function of an LP is called
optimal solution to the LP.

Cost/Profit Coefficient
The vector c (c1, c2, … … , cn)T which is formed by the
coefficients of the objective function is called cost/profit
coefficient.

Right Hand Side Constant
The vector b (b1, b2, … … , bn)T which is formed by the
right hand side values of the constraints is called right
hand side constant.

Basis Matrix
Basis matrix B is the matrix, whose elements are the
original columns corresponding to the basic variables.

II. Algorithm
In this section, we present the algorithm of our computer
oriented method.

Start
Input type of problem d, number of variables n, number
of constraints m, cost coefficients c[i], cost coefficients of
basic variables cBV, basis matrix B, columns of variables
a[i], right hand side vector b.

Step 1 calculate B-1 and B-1b.

Step 2 for i ≤ m, x = solve equation B-1b = 0

if x , solve inequality B-1b ≥ 0

Print inequality solution.

Step 4 calculate cBVB-1, for i ≤ n

if d = 1, calculate cj[i] = cBVB-1a[i] – c[i]

else, calculate cj[i] = c[i] – cBVB-1a[i]

Step 6 for i ≤ n, M = 0, x = solve equation cj[i] = 0,
clear the value of M

if x , solve inequality cj[i] ≥ 0

Print inequality solution.

Step 7 calculate cBVB-1b.
Output B-1b, cBVB-1b, cj[i].
Stop.

III. Mathematica Codes
Now, we present our computer codes of Mathematica for
SA. We have written the propram in Mathematica 4 for
student version, but it will run on any version of
Mathematica. In this program we have used some
mathematica codes like as,
Solve[equations, vars] attempts to solve equations for
vars.
Take[lst, {m, m}] returns a list consisting of the mth
object of lst.
InequalitySolve[inequality, vars] attempts to solve
inequality for vars.
If[condition, true, false] evaluates condition and executes
true if condition is True and executes false if condition is
False.
Do[expr,{i, imin, imax}] evaluates expr with the value of
i changing from imin to imax in increments of 1.
While[condition, expr] evaluates condition, then
expression, repetitively, until condition is False.
For our program we need an LP problem which is solved
by any method. Then our method can be applied to
analyze the sensitivity of the solution of the solved
problem. Our computer oriented program is presented as
follows:
<< LinearAlgebra`MatrixManipulation`
<< Algebra`InequalitySolve`
d = Input["d"]; n = Input["n"]; m = Input["m"]; i =
1;
Do[c[i] = Input["c"], {i, 1, n}]; z = Input["z"]; B =
Input["B"];
i = 1; Do[a[i] = Input["a"], {i, 1, n}]; b = Input["b"];
IB = Inverse[B]; IBb = IB.Transpose[b]; i = 1;
While[i <= m, x = Solve[Take[IBb, {i, i}] == 0];

If[x != {{}} && x != {}, Print[N[InequalitySolve[
(Take[IBb, {i, i}].{1}).{1} >= 0, p]]]]; i++];

zB = z.IB; i = 1;
If[d == 1, Do[ca[i] = ((zB.Transpose[a[i]]) - c[i]), {i, 1,
n}],

234

A Computer Technique for Sensitivity Analysis in Linear Programs

Do[ca[i] = (c[i] - (zB.Transpose[a[i]])), {i, 1, n}]];
i = 1; While[i <= n, M = 0; x = Solve[ca[i] == 0];
Clear[M]; If

[x != {{}} && x != {},
Print[N[InequalitySolve[(ca[i].{1}).{1} >= 0,

p]]]]; i++]; zBb = zB.Transpose[b];
Print[N[MatrixForm[IBb]] // Simplify]; Print[
N[zBb] // Simplify]; Print[

Array[ca, n] // Simplify // N];

We have generalized and designed the previous program
for general use. We have used an example in the input
box, so that one can easily understand which data values
he has to enter in the each input boxes. It makes the
program so easy that any one can use this program to
analyze the sensitivity of any LP problem. The
generalized form of the main program is given below:

<< LinearAlgebra`MatrixManipulation`

<< Algebra`InequalitySolve`

d = Input["Input Maximization or Minimization
Problem.\n If Max then input:

1\n If Min then input: -1"];

n = Input["Input the number of variables. Example:

5 \n in\n\n Z = 2 X1 + 3 X2 + X3\n\n 1/3 X1 + 1/3 X2 +
1/3 X3 + X4 =

1\n 1/3 X1 + 4/3 X2 + 7/3 X3 + X5 = 3\n\n X1, X2, X3,
X4, X5 >= 0"];

m = Input["Input the number of constraints.
Example: 2 \n in\n\n Z = 2 X1

+ 3 X2 + X3\n\n 1/3 X1 + 1/3 X2 + 1/3 X3 + X4 = 1\n
1/3 X1 + 4/3 X2

+ 7/3 X3 + X5 = 3\n\n X1, X2, X3, X4, X5 >= 0"];

i = 1; Do[c[i] = Input["Input the cost coefficent.

Example: 2 \n in\n\n Z = 2 X1 + 3 X2 + X3\n\n 1/3 X1
+

1/3 X2 + 1/3 X3 + X4 = 1\n 1/3 X1 + 4/3 X2

+ 7/3 X3 + X5 = 3\n\n X1, X2, X3, X4, X5 >= 0"], {i, 1,
n}];

z = Input["Input the cost coefficents of Basic
variables. Example:

{{2,3}} in\n\n Z = 2 X1 + 3 X2 + X3\n\n 1/3 X1 + 1/3
X2 + 1/3 X3 +

X4 = 1\n 1/3 X1 + 4/3 X2 + 7/3 X3 + X5 = 3\n\n X1,
X2, X3, X4, X5 >= 0"];

B = Input["Input the Matrix B. Example:
{{1/3,1/3},{1/3,4/3}} \n in\n\n

Z = 2 X1 + 3 X2 + X3\n\n 1/3 X1 + 1/3 X2 + 1/3 X3 +
X4 = 1\n 1/3 X1 +

4/3 X2 + 7/3 X3 + X5 = 3\n\n X1, X2, X3, X4, X5 >=
0"];

i = 1; Do[a[i] = Input["Input the column of variable in
constraints.

Example: {{1/3,1/3}} in \n\n Z = 2 X1 + 3 X2 + X3\n\n
1/3 X1 +

1/3 X2 + 1/3 X3 + X4 = 1\n 1/3 X1 + 4/3 X2 + 7/3 X3 +
X5 =

3\n\n X1, X2, X3, X4, X5 >= 0"], {i, 1, n}]

b = Input["Input the right hand side column b of
constraints. Example:

{{1,3}} in\n\n Z = 2 X1 + 3 X2 + X3\n\n 1/3 X1 + 1/3
X2 +

1/3 X3 + X4 = 1\n 1/3 X1 + 4/3 X2 + 7/3 X3 + X5 =
3\n\n

X1, X2, X3, X4, X5 >= 0"];

Print["\n## Optimal Solution:"]; Print["The range of
p is: "];

IB = Inverse[B]; IBb = IB.Transpose[b];

i = 1; While[i <= m, x = Solve[Take[IBb, {i, i}] == 0];

If[x != {{}} && x != {}, Print[N[InequalitySolve[

(Take[IBb, {i, i}].{1}).{1} >= 0, p]]]]; i++];

zB = z.IB; i = 1;

If[d == 1, Do[ca[i] = ((zB.Transpose[a[i]]) - c[i]), {i, 1,
n}],

Do[ca[i] = (c[i] - (zB.Transpose[a[i]])), {i, 1, n}]];

i = 1; While[i <= n, M = 0; x = Solve[ca[i] == 0];
Clear[M]; If

[x != {{}} && x != {},
Print[N[InequalitySolve[(ca[i].{1}).{1} >= 0,

p]]]]; i++]; zBb = zB.Transpose[b];

Print["The right hand side column of optimal tableau
is: ",

MatrixForm[IBb] // Simplify // N]

Print["The Optimum value is: z = ", N[zBb] //
Simplify]

Print["The Zero Row is: ", Array[ca, n] // Simplify //
N];

Now if we run the program an input box will appear like
below:

235

Roni Saha and M Babul Hasan

One need to input some data values in different input
boxes one after another. They are type of the problem,
number of variables, number of constraints, cost
coefficients, cost coefficients of basic variables, basis
matrix B, column of constraints, and right hand side of
constraints.
After inputting all the data values we find the optimal
table of the given LP. Now, if we change any value of the
problem by the variable p, our program will show the

range of p for which the solution will still remain optimal
with the changed values in optimal table.
In the following section we will illustrate our technique
with a numerical example.

IV. Numerical Illustrations
In this section, we take an LP problem as follows,

max z = 10x1 + 6x2 + 4x3

s.t. x1 + x2 + x3 100 (labor)
10x1 + 4x2 + 5x3 600 (material)

2x1 + 2x2 + 6x3 300 (administration)
x1, x2, x3 ≥ 0

Solving by usual simplex method we get the optimal
solution as, x1 = 33.33, x2 = 66.67, x3 = 0, x4 = 0, x5 = 0,
x6 = 100 and Z = 733.33. x4, x5 and x6 are slack variables.
Now if we run our program for this particular problem
then the output of our program will be as below,

Output 1

Changing the Objective Function Coefficient of
Nonbasic Variable
In example, x3 (the daily production level of product 3) is
a nonbasic variable. The unit profit on product 3 in the
objective function is c[3] = 4. Now if we replaced c[3] in
the objective function by p in our program then the output
of the program is as like Output 2.
In output 2, only the coefficient of x3 in the optimal row
is changed. All other values of optimal table remain
same. The range of p is p ≤ 6.66667 with no lower bound.

So, if we change the coefficient of x3 in the objective
function within the range - ≤ p ≤ 6.66667, our solution
will be still optimal. We can afford the changes in the
unit profit value of product 3 from - to 6.6667. But it
will not change our maximum profit value. If the unit
profit of product 3 decreases, it will not affect the
optimality of our previous optimal table, but if increases,
the solution will remain optimal to the unit profit value
6.66667. If it increases more then 6.66667, then our
solution will lose its optimality.

Output 2

236

Roni Saha and M Babul Hasan

Changing the Objective Function Coefficient of
Basic Variable
x1, the variable for the daily production level of product
1 is a basic variable in this example. The coefficient of
x1 in the objective function is c[1] = 10. If we replace
c[1] by p in our program then the output of the program
will be as like below Output 3. In Output 3, the right
hand side is same as before. Only the optimal row and

the value of z are changed. The ranges of p in output 3
are like as p ≥ - 6, p ≤ 15 and p ≥ 6. So the minimum
range will be 6 ≤ p ≤ 15. By this we can say that the
solution will be optimal if we change the value of c[1]
by any value in this range. Hence in order to
maximizing the profit we can afford the changes in the
profit value of product 1 from 6 to 15.

Output 3

By the same way, we can show the sensitivity of the
optimal solution of this particular factory problem for
the other changes of data values.

V. Conclusion
In our paper, we have developed a computer oriented
method for analyzing sensitivity of the optimal solution
for any changes of data and for any kind of LP
problem. And we have showed sensitivity of the
optimal solution of a particular factory problem for
some changes in data values. Our program is capable
of handling any number of constraints and any number
of variables. This method can also be extended for
solving any kind of LP problems. We concluded that
our technique is more efficient for performing
sensitivity analysis.

……………..

1. Higle J. L. & S. W. Wallace (July-August 2003),
“Sensitivity Analysis and Uncertainty in Linear
Programming”, Interfaces © 2003 Informs, 33, 4,
53–60.

2. Hasan M. B., A. F. M. K. Khan and M. A. Islam
(2001), “Basic Solution of Linear System of
Equations through Computer Algebra”, “Ganit: J.
Bangladesh Math”, Soc. 21, pp. 1-7.

3. Aucamp D. C. and D. I. Steinberg (June 1982),
“The Computation of Shadow Prices in Linear
Programming”, “The Journal of the Operational
Research Society”, 33, 6, 557-565.

4. Winston W. L., “Operation Research, Application
and Algorithms, 3rd edition”.

5. Kambo, N.S., 1984, “Mathematical programming
technique,” Affiliated East-West Press Pvt. Ltd.,
New Delhi.

6. Dantzig G. B., “Linear Programming and
extension”, Princeton university press, Princeton,
N.J (1962).

7. Ravindran, Phillips and Solberg, “Operation
Research Principles and Practice.”

8. Eugene D., “Schaum’s outlines-Mathematica”,
Mc-Graw-Hill.

9. Taha H. A., “Operations Research: An
introduction, 6th edition”, Prentice Hill of India,
PVT. LTD., New Delhi (1997).

10. Saul I. Gass, “Linear Programming, Methods and
Applications, third edition”, World Systems
Laboratories, Inc. The American University.

237

