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Abstract
For building a linear prediction model, Forward selection (FS) (Weisberg 1985) and Least Angle Regression (LARS) (Efron et al. 2004) are
two efficient stepwise procedures for sequencing the candidate predictors. Both the methods yield poor results when data contain outliers
and other contaminations. Khan et al. (2007a) and Khan et al. (2007b) proposed robust versions of LARS (RLARS) and FS (RFS),
respectively, which are computationally very suitable and scalable to large high-dimensional datasets. However, no comparison has been
made between RFS and RLARS. In this study, we compare these two stepwise algorithms. We conduct an extensive simulation study to
compare the number of correct covariates identified by these two algorithms in linear regression. We also apply these algorithms to
empirical data. Based on our simulation study and real-data application, the efficiency of RFS appears to be better than that of RLARS.

Key words: Computational complexity; Forward Selection; Least angle regression; Linear regression; Robust prediction;
Stepwise procedure; Winsorization.

I. Introduction
Robust model selection has not received much attention in
the robustness literature. Most of the work related to robust
model selection in regression has focused on the
development of robust selection criteria that can be used to
compare models. Seminal works that address this issue
include those of Ronchetti (1985) and Ronchetti and Staudte
(1994), which introduced robust versions of two selection
criteria, the Akaike information criterion and Mallows’ .pC
Maronna, Martin and Yohai (2006) proposed a robust final
prediction error (FPE) criterion (see also the S-PLUS
documentation), whereas Muller and Welsh (2005)
proposed a robust selection criterion based on a stratified
bootstrap procedure. Robust selection criteria for more
general models have been developed by Cantoni and
Ronchetti (2001) for generalized linear models and
Ronchetti and Trojani (2001) for generalized method of
moments. In the later context, model selection can make use
of indirect inference (see Genton and Ronchetti 2003; Jiang
and Turnbull 2004). Atkinson and Riani (2002) proposed an
added-variable t test for variable selection in the context of
regression based on the forward search procedure.
Morgenthaler, Welsch, and Zenide (2003) constructed a
selection technique to simultaneously identify the correct
model structure as well as any unusual observations.
Ronchetti, Field and Blanchard (1997) proposed robust
model selection by cross-validation. A major drawback of
most robust model selection methods is that they are very
time-consuming, because they require the robust fitting of a
large number of submodels. One exception is a model
selection procedure based on the Wald test (Sommer and
Huggins 1996), which requires the computation of estimates
only from full models.

Classical forward selection (FS) (see, e.g., Weisberg 1985,
chap. 8) and classical least angle regression (LARS)
proposed by Efron et al. (2004) are two computationally
efficient techniques, but yield poor results when the data
contain outliers and other contaminations. Khan et al.
(2007a) and Khan et al. (2007b) proposed robust versions of
LARS (RLARS) and FS (RFS) respectively, which are
computationally very suitable and scalable to large high-
dimensional datasets.

Both the RFS and RLARS model selection strategies
sequence the input variables to form a list such that the good
predictors appear in the beginning. Though RFS and
RLARS are computationally suitable stepwise procedures, a
comparison of these two methods has not been done yet. In
this paper, we compare the RFS procedure with the RLARS
through a simulation study. We also compare these two
procedures through empirical data analysis.

The rest of the article is organized as follows. In section 2,
we review the classical FS and LARS. In section 3, we
review RFS and RLARS. In section 4, we present the result
of simulation study and compare the sequences produced by
RFS and RLARS procedures. Section 5 contains a real-data
application. We conclude in section 6.

II. FS and LARS Algorithms

In this section we review two important step by step
algorithms: FS and LARS.

(a) Forward Selection (FS)

Let dXXX ,,, 21  be n dimensional vectors representing

the covariates, and Y the n-dimensional vector representing
the response. By location and scale transformations we can
always assume that the variables have been standardized to
have mean zero and unit length. The FS procedure selects
the covariate ( ,1X say) that has the largest absolute

correlation yr1 with Y and calculates the residual vector

.11 XrY y All other covariates are then ‘adjusted for 1X ’

and entered into competition. That is, each )1( jX j is

regressed on 1X and the corresponding residual vector

1.jZ (which is orthogonal to 1X ) is obtained. The

correlations of these 1.jZ with the residual vector

,11 XrY y called partial correlations between jX and Y

adjusted for ,1X decide the next variable 2(X , say) to
enter the regression model. All other covariates are then
‘adjusted for 1X and 2X ’ and entered into further
competition and so on. We continue adding one covariate at
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each step, until a stopping criterion is met. We need )1( d
steps to get the ordering of all d predictors.

(b) Least Angle Regression (LARS)

Efron et al. (2004) proposed LARS, which is closely related
to the SFS and LASSO (Tibshirani 1996) procedures. LARS
is a stylized version of the Stagewise procedure and
provides an ordering in which the covariates enter a
regression model. This sequence is usually the same as
LASSO or SFS but is obtained by greatly reducing the
computational burden.

The SFS procedure enters variables in small steps in the
regression model to prevent exclusion of correlated
predictors from top of the sequence. But this method often
becomes time-consuming, because thousands of tiny steps
are often taken in the direction of the same variable. LARS
solves this problem by analytically determining the optimal
step size for each variable.

Let dXXXY ,,,, 21  be the variables, standardized using

their corresponding mean and standard deviation. Let jr
denote the correlation between jX and ,Y and let XR be

the correlation matrix of the covariates .,,, 21 dXXX 

Suppose that mX has the maximum absolute correlation r
with ,Y and denote ).(sign mm rs  Then mX becomes the

first active variable, and the initial fit 0ˆ Y should be
modified by moving along the direction of mm Xs a certain
distance, , which can be expressed in terms of correlations
between the variables. By determining , LARS
simultaneously identifies the new covariate that enters the
model, that is, the second active variable.

As soon as we have more than one active variable, LARS
modifies the current fit Ŷ along the equiangular direction,
the direction that has equal angle (correlation) with all
active covariates. Moving along this direction ensures that
the correlation of each active covariate with the residual
decreases equally. Let A be the set of the subscripts
corresponding to the active variables. The standardized
equiangular vector AB is derived. Note that we do not need
the direction AB itself to determine which covariate enters
the model next; we need only the correlation of all variables
(active and inactive) with .AB These correlations can be
expressed in terms of the correlation matrix of the variables.
LARS modifies the current fit by moving along AB up to a
certain distance ,A which can be determined from the
correlations of the variables.

III. Robustification of FS and LARS Algorithms

In the last section, we review FS and LARS algorithms
which can be expressed in terms of sample means,
variances, and correlations. Because of these non-robust
building blocks, these algorithms are sensitive to
contamination in the data. A simple robustification of these
algorithms can be achieved by replacing the non-robust
ingredients of the algorithms by their robust counterparts.

The choices of rapidly computable robust center and scale
measures are straightforward: median (med) and median
absolute deviation (mad), which are used to robustly
standardize the data.  Unfortunately, good available robust
correlation matrix estimators are computed from the d -
dimensional data and thus are very time consuming (see,
e.g., Rousseeuw and Leroy 1987). On the other hand, robust
univariate approaches (Huber 1981) are very sensitive to
correlation outliers (outliers that are not detected by
univariate analyses but affect the classical correlation).

One solution is to derive correlations among pairs of
variables from an affine-equivariant bivariate covariance
estimator. A computationally efficient choice is the bivariate
M -estimator defined by Maronna (1976). Alternatively, the
robust correlation estimator of Gnanadesikan and Kettnring
(1972) or the related orthogonalized Gnanadesikan-
Kettnring estimator (Maronna and Zammar 2002) can be
used. For very large, high-dimensional data sets, we need an
even faster robust correlation estimator. Huber (1981)
introduced the idea of univariate winsorization of the data
and suggested that classical correlation coefficients be
calculated from the winsorized data. Alqallaf, Konis, Martin
and Zamar (2002) reexamined this approach for the
estimation of individual elements of a high-dimensional
correlation matrix. For n univariate observations

,,,, 21 nxxx  the transformation is given by

,,,2,1)),(/))((( nixmadxmedxu iiici 

where the Huber score function )(xc is defined by
min(max ),),,( cxc with c a tuning constant chosen by the
user (e.g., 2.5).or2c Note that in our case,

0)( ixmed and ,1)( ixmad because we use med and
mad to robustly standardize the data. The univariate
winsorization approach can be computed very rapidly, but
unfortunately it does not take into account the orientation of
the bivariate data.

To remedy this problem, Khan et al. (2007a) proposed a
bivariate winsorization of the data based on an initial robust
bivariate correlation matrix R0 and a corresponding tolerance
ellipse. Outliers are shrunken to the border of this ellipse by
using the bivariate transformation

,)1,)(/min( xxDcu  with .),( 21
txxx 

Here, )(xD is the Mahalanobis distance based on some
initial bivariate correlation matrix R0. For the tuning
constant ,c we use ,99.5c the 95% quantile of the 2

2
distribution. The choice of R0 is discussed later.

The Initial Correlation Estimate. Choosing an appropriate
correlation matrix R0 is an essential part of bivariate
winsorization. In principle, we could use any robust
bivariate scatter estimate, but for computational
convenience, Khan et al. (2007a) proposed a new method
called adjusted winsorization. This method considers
quadrants relative to the coordinatewise medians (which in
this case are 0 due to the robust standardization of the data)
and uses two tuning constants to perform univariate
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winsorization of the data. A larger tuning constant, 1c , is
used to winsorize the points lying in the two diagonally
opposed quadrants that contain most of the standardized
data (called the “major quadrants”). A smaller tuning
constant, 2c , is used to winsorize the remaining data. In this

article we use 21 c and ,12 chc  where ,/ 12 nnh 
1n is the number of observations in the major quadrants and

.12 nnn  The initial correlation matrix R0 is obtained by
computing the classical correlation matrix of the adjusted
winsorized data. The adjusted winsorization handles
correlation outliers much better than univariate
winsorization. By using bivariate winsorization, the outliers
are shrunken to the boundary of the larger ellipsoid and thus
appropriately downweighted so that a robust correlation
estimate is obtained. Although the initial adjusted
winsorization and the resulting bivariate winsorization are
not affine-equivariant, they can be computed very rapidly
and can appropriately handle correlation outliers.

IV. Simulations

To compare the behavior of RLARS with RFS, we consider
a simulation setting similar to that used by Frank and
Friedman (1993). We first create a linear model,

,21 ikLLLY   (i)

with k latent variables, where kLLL ,,, 21  and  are
independent standard normal variables. The value of  is
chosen so that the single-to-noise ratio is 3. A set of d
candidate predictors is created as follows. Let deee ,,, 21 

be independent standard normal variables and let

iii eLX  , ,,,2,1 ki 

,111   kk eLX 

,212   kk eLX 

,323   kk eLX 



,1313   kkk eLX 

,33 kkk eLX 

and

,ii eX 
.,,23,13 dkki 

The constants 5 and 5.0 are chosen so that
 ),(corr 11 kXX  ),(corr 21 kXX  ),(corr 32 kXX

.
3
1),(corr 3 kk XX Note that covariates kXXX ,,, 21 

are low noise perturbations of the latent variables and
constitute our target covariates. Variables

dkk XXX ,,, 2313  are independent noise covariates

and variables kkk XXX 321 ,,,  are noise covariates
that are correlated with the target covariates.

To allow for a fraction  of outliers, we consider the
following sampling distributions, listed in increasing order
of difficulty:

(1) ),1,0(~ N no contamination

(2) )1,0(/)1,0()1,0()1(~ uniformNN  ,
symmetric, slash contamination

(3) ),1,20()1,0()1(~ NN  asymmetric, shifted
normal contamination

(4) Same as (2), except that contaminated cases come
along with high leverage X -values (normal random
variables with mean 50 and variance 1 in our
simulation)

(5) Same as (3), but with high leverage outliers, as
described in (4).

To compute RFS and RLARS, we generate 1000
independent samples of size 150n from the five
simulation designs just described, with 10k latent
variables and 50d candidate covariates. For each data
set, we sequence the variables using RFS and RLARS.

To summarize the simulation results, for each sequence we
determine the number mt of target variables included in the
first m sequenced variables, with m ranging between 1
and 20 for each of the methods. Fig. 1 shows the average
(over 1000 data sets) of mt for RFS and RLARS and
sampling situations. We display here the results for the case
where .10.

From figure 1(a), we see that RFS performs better than
RLARS procedure in the uncontaminated case. From Fig.
1(b)-1(e), we also see that RFS performs better than RLARS
procedure under contamination. In the design without
leverage but asymmetric, shifted normal contamination,
RFS shows slightly better performance than RLARS [Fig.
1(c)]. All the figures show that RFS procedure is much less
affected than RLARS.

V. Example

In this section, we use a real data set to further compare the
performance between RFS and RLARS algorithms. We use
a data set given in the CAED Report 17, Iowa State
University, presented in 1963 (Draper and Smith 1998).

The response variable is the corn yield (bu/acre). There are
9 covariates, which we number from 1 to 9. Though this
analysis may not be of particular scientific interest, it will
demonstrate the ability of RFS and RLARS algorithms to
identify the correct covariates in linear regression.

RFS sequences the covariates in the following order: (1, 6,
2, 5, 3, 8, 7, 9, 4). When RLARS is applied to the data, we
obtain the following different sequence of covariates: (1, 6,
7, 8, 2, 5, 3, 9, 4). Table 1 presents the results of fitted least
squares linear regressions (including the intercept) of the
selected covariates taken from each of the above sequences.
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Comparing the values of robust 2R (robust coefficient of
multiple determination) measure, such as

,))(/()(1 222 YmademedianR  where e is the vector
of residuals from the robust fit (see also Rousseeuw and
Leroy 1987), it may generally be concluded that the
efficiency of RFS is more than that of RLARS in selecting
the target covariates in the linear regression model.

VI. Conclusions

FS and LARS are popular and computationally suitable
algorithms for building linear prediction models, but they
are sensitive to outliers. Though RFS is more aggressive
fitting technique than RLARS, RFS has much better
performance compared to the RLARS under both the
uncontaminated and contaminated cases.

Fig. 1. Averages of the number of target variables mt versus
m for each of the methods and sampling situations considered. (a)
No contamination; (b) slash contamination; (c) normal
contamination; (d) slash contamination/high leverage; (e) normal
contamination/high leverage. We generated data sets of 50d
predictors, 10k latent variables and 10% of contamination

)1.0( ( — RFS; --- RLARS).

Table. 1. Performance of RFS and RLARS

Number of
covariates

Sequence of covariates
in RFS

Sequence of covariates
in RLARS

robust 2R
for RFS

robust 2R
for RLARS

3 1, 6, 2 1, 6, 7 0.852 0.812
4 1, 6, 2, 5 1, 6, 7, 8 0.902 0.848
5 1, 6, 2, 5, 3 1, 6, 7, 8, 2 0.906 0.854
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