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Abstract
We prove that a normal homogeneous space with the property that every Jacobi field along a geodesic vanishing at two points is the
restriction of a Killing field along that geodesic is a globally symmetric space.

I. Introduction

On a symmetric space, the Jacobi equation can be easily
solved, and it follows from the work of Boot and Samelson
[2] that a Jacobi field along a geodesic vanishing at two
distinct points is the restriction of a Killing field along that
geodesic. A Jacobi field which is the restriction of a Killing
field along a geodesic is called isotropic .

In the case of a naturally reductive space, Chavel [4], [16]
showed how to write the Jacobi equation in an efficient
manner. By means of explicit calculations, he then proved
that a simply connected normal homogeneous space of rank
one with the property that any Jacobi field vanishing at two
points is isotropic is homeomorphic to a rank one symmetric
space [5].

Later, Ziller [20] studied the Jacobi equation on naturally
reductive spaces, and obtained several interesting results
about the structure of the space of Jacobi fields. This led
him to suggest the following conjecture:

A naturally reductive homogeneous space with the property
that every Jacobi field vanishing at two points is isotropic, is
locally symmetric. In this paper, we prove that this
conjecture is true in the case of a normal homogeneous
space.

Theorem 1. A normal homogeneous space with the property
that every Jacobi field vanishing at two points is isotropic
is a globally symmetric space.

As a preparation for the proof above theorem, the following
theorem of [8]

Theorem 2. An isotropic action of a compact Lie group on
a normal homogeneous space is variationally complete if
and only if it is hyperpolar.

II. Preliminaries

We first recall the notion of variationally completeness
introduced by Bott and Samelson in [2]. Let G be a Lie
group acting properly and isometrically on a complete
Riemannian manifold X .

A geodesic  in X is called G-transversal if it is
perpendicular to every G-orbit it meets. A Jacobi field along
a geodesic is called G-isotropic if it is the restriction of a G-
killing field along that geodesic. A Jacobi field along a G-
transversal geodesic  is called G-transversal if it is the
variational vector field associated to a variation of  through

G-transversal geodesics which are at time zero
perpendicular to the same G-orbit. Notice that a G-isotropic
Jacobi field along a G-transversal geodesic is a G-
transversal Jacobi field which is moreover tangent to the G-
orbit at every point.  The action of G on X is called
variationally complete if every G-transversal Jacobi field
that is tangent to the G-orbits at two diffeent points is G-
isotropic. It is proved in [2] is enough to impose this
condition on  G-transversal Jacobi fields that are tangent to
the G-orbit at one point and vanish at another one.

Variational completeness can also be defined for proper
Fredholm isometric actions of Hilbert Lie group on
complete Riemannian Hilbert manifolds [15], [17]. It is not
difficult to show that an orbit of a Fredholm isometric action
has the property that the normal exponential map is a
nonlinear Fredholm map of index zero. This has as pleasant
consequence inter alia that monofocal and epifocal points
along a normal geodesic must coincide and have finite
multiplicities, no clustering of focal points along finite
normal geodesic segments is permitted, and the set of focal
points to the orbit is of first Baire category [14].

It is known and easy to see that a G-transversal Jacobi field
J along a G-transversal geodesic  in a Riemannian
manifold X ( of finite or infinite dimension ) has the
property that (0)J is tangent to the orbit Gx and

(0) (0)vJ A J  is normal to Gx , where

(0) x  , (0) v   , and vA is the Weingarten operator

of Gx with respect to v .

The next proposition 1 generalizes Lemmas 1 and 2 in [8].

Proposition 1. Let Ĝ and G be two Hilbert Lie groups
equipped with proper Fredholm isometric actions on the
complete Riemannian Hilbert manifolds X̂ and X , and
suppose that there is an equivariant Riemannian submersion

ˆ: X X  with respect to an epimorphism ˆ: G G 

such that ˆ: X X  is a principal Ĥ -bundle for a

Hilbert Lie subgroup Ĥ of Ĝ . Then the action of Ĝ on

X̂ is variationally complete if and only the action of G on
X is variationally complete.
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Proof. We assume that the action of G on X is
variationally complete and prove that so is the action of

Ĝ on X̂ . The other direction is easier.

Let ̂ be a Ĝ -transversal geodesic in X̂ defined on

[0,1] and let Ĵ be a Ĝ -transversal Jacobi field along ̂
such that ˆ(0)J is tangent to the Ĝ -orbit through

ˆ ˆ(0) x  and ˆ(1) 0J  . We must show that Ĵ is the

restriction along ̂ of a Ĝ -Killing field.

There is a variation  ̂ of ̂ through Ĝ -transversal

geodesic whose associated variational vector field is Ĵ .

Since the Ĝ -orbits are the preimages under  of the Ĝ -

orbits, the normal spaces to the Ĝ -orbits are horizontal
with respect to  , so that each ̂ is a horizontal curve. It

follows that  , where ˆ    , defines a variation of

ˆ   through Ĝ -transversal geodesics in X .

Moreover, the associated Ĝ -transversal Jacobi field

J along  satisfies *
ˆ( ) ( )J t J t . This implies that

(0)J is tangent to the Ĝ -orbit through ˆ: ( )x x and
(1) 0J  . By variational completeness of the action of

G on X , there is a G -Killing field  on X such that

( ) ( )J t t   . Since ˆ: G G  is an epimorphism,

there is a Ĝ -Killing field  on X such that *
ˆ   , and

since the Ĥ -orbits coincide with the fibers of  , we may

subtract an Ĥ -Killing field from ̂ if necessary and

assume furthermore that ˆ ˆˆ (0)x J   .

Let ˆ ˆ( ) ( )J t t   . Then J is a Ĝ -isotropic Jacobi field

along ̂ . Since the Jacobi field Ĵ and J are Ĝ -trans-

versal, we have that ˆ
ˆ ˆ(0) vJ A u  and ˆ ˆ(0) vJ A u  are

normal to ˆ ˆGx ,where ˆˆ (0)v   and ˆˆ (0) (0)u J J   .

Since the normal spaces to the Ĝ -orbits are horizontal, it

follows that both ˆ
ˆ ˆ(0) vJ A u  and ˆ ˆ(0) vJ A u  are

horizontal lifts of (0) (0)vJ A J  , where (0)v   .

Hence ˆ (0) (0)J J   , from where we conclude that

Ĵ J  .
Hence completes the proof of the Proposition.

Next we need the concept of a hyperpolar action, [15], [12].
Let G be a lie group acting properly and isometrically on a
complete Riemannian manifold X . A section is a
connected, complete (necessarily totally geodesic )
submanifold  of X that meets all the orbits of G in such

a way that the intersections between  and the orbits of G
are all orthogonal. An action admitting a section is called
polar, and an action admitting a section that is flat in the
induces metric is called hyperpolar. Conlon proved in [6]
that a hyperpolar action of a compact Lie group on a
complete Riemannian manifold is variationally complete,
and it was proved in [8] that the converse of his result is true
in the case in which the Riemannian manifold is a compact
symmetric space. Notice that neither do we assume as
Conlon in [6] that  is closed  nor do we assume that it is
properly embedded as is usually required in the recent
literature on the subject. Polar and hyperpolar actions can
also be defined for proper Fredholm actions of Hilbert Lie
groups on Riemannian Hilbert manifolds [17].

Proposition  2. Let Ĝ , G , X̂ , X , and  be as in

Proposition 1. If the action of Ĝ on X̂ is polar (resp.
hyperpolar), then the action of G on X is polar (resp.
hyperpolar).

Proof. Let  be a section of the action of Ĝ on X̂ . Since 
is horizontal with respect to  , we have that

:   X is an isometric immersion. It is clear that

(  ) is an immersed submanofold of X that meets all the
G -orbits perpendicularly. Moreover, (  ) is flat if  is
flat. Hence completes the proof.

III. The proof of  Theorem 2

Let M be a connected Riemannian homogeneous space.
Then M can be identified with a coset space /G K , where
G is an effective, transitive connected group of isometries
of M and K is the isotropy subgroup at a chosen base
point 0x . Notice that K is compact. Let g and f be the Lie

algebras of G and K , respectively. Then there is an
Ad( )K -invariant vector space direct sum g f p ; this is
called a reductive decomposition of M . The differential of
the projection /G G K at the identity indentifies p and

0xT M , and the given Riemannian metric in M is the G -

invariant metric induced from an Ad( )K -invariant
positive definite symmetric bilinear from on p. Now M is
called normal homogeneous if there exists an Ad( )G -
invariant positive definite symmetric bilinear from on g such
that f and p are orthogonal complements and whose
restriction to p induces the given metric in M .

Let /M G K be a normal homogeneous space, and let
H be a compact Lie group acting by isometries on a M .
Without loss of generality, we may assume that G is a
compact semisimple Lie group, and H is a closed subgroup
of G . We will prove that the action of H on M is
hyperpolar if and only if it is variationally complete.

A hyperpolar action is always variationally complete
according to Colon’s theorem. In order to prove the
converse, we follow the same idea of the proof of the main
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result of [8]. We first lift the action of H on M to a
variationally complete action of a path group on a Hilbert
space. A Lemma in [8] asserts  that this action is hyperpolar.

So we begin by constructing a lift of the action of H on
M to an action of a path group on a  Hilbert space, [17],
[18], [8] for details about this construction. Recall that G is
equipped with a bi-invariant Riemannian metric. Let

2 ([0,1],GV L ) donote the Hilbert space of 2L -

integrable paths :[0,1]u  g, and let p ( )G denote the
Hilbert Lie group of absolutely continuous paths
u:[0,1] G whose derivative is square integrable. Then

p ( )G acts on GV by affine isometries via g*u  g u g 1 ,

where gp ( )G and Gu V . Let : /Gk V G K  be
the parallel transport map defined by

( )k u  g u (1)K ,where g u  p ( )G is the unique

solution of g u
1 g u u , g (0) 1u  .

Let p ( , )G H K denote the closed, finite codimensional
subgroup of p ( )G consisting of those paths g such that

g (0) H and g u (1)K . Then it is known that: the action

of p ( , )G H K on GV is proper, Fredhlom and isometric;

: /Gk V G K  is a Riemannian equivariant submersion

with respect to the epimorphism gp ( , )G H K
 g (0) H ; and : /Gk V G K  is a principle

p ( ,1 )G K -bundle, where p ( ,1 )G K denotes the
subgroup of p ( , )G H K consisting of paths g such that
g (0) 1 .

Now we can apply Proposition 1 to the equivariant
Riemannian submersion : /Gk V G K  to deduce that

the action of p ( , )G H K on GV is variationally complete.

Lemma 3 in [2] implies that the action of p ( , )G H K on

GV is hyperpolar, and Proposition 2 implies that the action

of H on /G K is hyperpolar. This finishes the proof of
Theorem 2.

IV. The proof of Theorem 1

Let /M G K be a normal homogeneous spaces where
G is compact and semisimple as in the last section, and
suppose that M satisfies the hypothesis of Theorem 1. We
first prove a following Lemma 1 that states that the isotropy
action of K on M is variationally complete. It then follows
from Theorem 2 that this action is hyperpolar. Therefore we
can rely on the results of [11] to deduce that M is a
symmetric space.

Lemma 1. If every Jacobi field on M vanishing at two
points is isotropic, then the isotropy action of K on M is
variationally complete.

Proof. Suppose that J is a K -transversal Jacobi field
along a K -transversal geodesic such that (0) is the

base point 0x , (0) 0J  and (1)J is tangent to the K -

orbit through (1) . If (1) 0J  , then J is K -isotropic by
hypothesis. In case (1) 0J  , since (1)J is tangent to the
K -orbit through (1) , there is a K -Killing field X on

M such that (1)J X . (1) . Now ( ) ( )J t J t X  .
( )t is a Jacobi field along  vanishing at 0t  and 1t  .

By hypothesis, J is K -isotropic. It follows that J is also
K -isotropic.

As we said above, Theorem 2 now yields that the action of
K on /G K is hyperpolar. In order to finish the proof, we
need to invoke the results of [11]. It is important to notice
that even through the definitions of polarity and
hyperpolarity in [11] require sections to be properly
embedded, this will not affect our argument. Indeed, we first
remark that in [11] remains true even if the sections of the
K -action on M are not properly embedded. This can be
seen by noticing that the proof of Proposition in [1] does not
use that sections are properly embedded. Now it follows as
in  Proposition in [11] that the linear isotropy representation
of K on 0xT M  p is polar with Abelian subalgebras as

sections, or, in the language of that paper, that ( , )G K is a
polar pair. Hence it follows from the classification of polar
pairs in that same paper that /G K is a globally symmetric
space and this finishes the proof of Theorem 1.

V. Other Remarks

We would like to take this opportunity to make some
remarks about variationally complete actions and the related
class of taut submanifolds of complete Riemannian
manifolds.

An embedded submanifold M of a complete Riemannian
manifold N is called reflective if M is complete with
respect to the induced metric and it is a connected
component of  the fixed point set of an involutive isometry
 of N . By a well known result about fixed points of
isometries, every reflective submanifold is automatically
totally geodesic. Reflective submanifolds of simply
connected symmetric spaces were completely classified by
Leung [13]. It is not difficult to see that a reflective
submanifold M of a compact symmetric space N is an
orbit of a symmetric subgroup H of the connected
component G of the isometry group of N . Namely, H can
be taken to be the connected component of the centralizer of
 in G . It follows from a theorem of Hermann [9] that the
action of H on N is variationally complete [12]. It is easy
to see that this implies that the conjugate locus of M in
N is the union of the singular H -orbits in N , a result
which was reproved by Burns in [3] by direct calculations.

A properly embedded submanifold M of a complete
Riemannian manifold N is called taut if, for some
coefficient field, the energy functional
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:qE p ( , ) RN M q  is a perfect Morse function for

every q N that is not a focal point of M , where

p ( , )N M q denotes the space of 1H -paths
:[0,1] N  such that (0) M  and (1) q  [7], [19].

Bott and Samelson [2] proved that the orbits of variationally
complete actions are taut submanifolds. Hence it follows
from the remarks in the preceeding paragraph that reflective
submanifolds of compact symmetric spaces are taut
submanifolds. This partially answers a question raised by
Terng and Thorbergsson in [19] that whether totally
geodesic submanifolds of compact symmetric spaces are
always taut.
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