
Dhaka Univ. J. Sci. 58(1): 49-53 2010 (January)

A Modified Approach to Improve the Performance of Lazy Release Consistency (LRC)
Model

Mosarrat Jahan, Shaily Kabir and Mohammad Asif Hossain Khan
Department of Computer Science & Engineering, Dhaka University, Dhaka-1000, Bangladesh

Received on 12.10.2008. Accepted for Publication on 01.06.2009

Abstract
This paper proposes a method for improving the performance of existing Lazy Release Consistency (LRC) model. In LRC model,
before accessing a shared page a processor must acquire a lock associated with it as well as achieve all modifications made by other
processors on the same shared page from the last lock releaser. All modifications are maintained by a data structure known as diff. For
each access to a shared page a new diff is being created. As a result, the number of total diffs is increased in parallel with the access to
shared page, causing a large amount of message transfer at the time of acquiring a lock. The proposed technique reduces the network
traffic at a great extent by transferring only the critical section of shared page instead o f transferring a large number of diffs. It also
ensures the transmission of message in reduced size for a particular page. Moreover, by eliminating the need of maintaining the
redundant copies of a diff, the proposed method also reduces the vast memory requirement of LRC model. From the experimental
results, it is found that the proposed modification significantly minimizes the message transfer as well as the memory requirement
without affecting the functionalities of the LRC model.

Keywords: Distributed shared memory (DSM), Release Consistency (RC), LRC, Fast Lazy Release Consistency (FLRC),
Consistency model, Critical Section (CS).

I. Introduction

Distributed shared memory (DSM) is a well-known inter-
process communication technique for distributed system. It
provides a vast amount of physically shared memory to the
programmers and hides the explicit exchange of messages
among various nodes [2]. In DSM, a shared page is
replicated in the cache of different nodes to support
simultaneous memory access operations. It provides the
advantages of parallel read operations and also raises the
need to maintain the consistency of the replica when a write
operation takes place. The performance of DSM is limited
by the additional communication traffic required in order to
maintain memory consistency over physically separated
nodes. To overcome this limitation, many memory
consistency models have been proposed. A consistency
model is a contract between the system and the application,
which obligates the system to return an expected value to
the application provided that the application accesses the
memory following certain rules [3]. The first memory
consistency model was Lamport’s sequential consistency
model [4] which had a very restricted memory access
requirement and after that a number of consistency models
were invented that relaxed the access constraint to a greater
extent. It is observed that, the restrictive models guarantee
better consistency but require large number of message
transfer [3]. However, less restrictive models reduce the
communication traffic and provide the necessary
consistency required for the proper operation of the
application programs [3].

This paper is organized into a number of sections: Section 2
represents the background of the paper, section 3 defines the
basic terminologies, and section 4 and 5 provides the basic
theme of LRC model. Section 6 contains the proposed
modification and section 7 represents it’s advantages.
Section 8 and 9 presents the experimental result and
discussion, respectively. Finally section 10 represents the
conclusion.

II. Motivation of the Paper

A memory consistency model plays an important role in
controlling the communication overhead of DSM. The first

DSM implementation used sequential consistency (SC)
model that was proposed in 1979 by Lamport [2]. In this
model, all operations in a particular memory location are
observed by all processes in the same order [2]. It requires
that coherence operations had to be propagated immediately
and processes had to wait for memory operations to
complete before starting a new operation. After that, casual
consistency model, pipelined random access model (PRAM)
and processor consistency models were proposed to relax
the strict memory access constraint of SC model [2]. All of
them provided better consistency at the cost of large
network traffic and reduced the concurrency. So, attempts
were made by the researchers to relax the access constraints.
In 1988, Dubios proposed weak consistency model that
sends modification for a group of memory operations and
uses a synchronization variable to determine the time to
synchronize the memory [2]. Then RC model proposed that
a process should access the “acquire” synchronization
variable to collect all the changes made to the shared
memory by other processors before entering a critical
section (CS). The process must access “release”
synchronization variable to send all the changes made by it
in the CS to the other processors at the time of exiting the
critical section. The execution on an RC memory produces
the same results as that of SC memory for majority of the
programs [5]. Based on RC model researchers developed the
ERC model in Munin[5] and LRC in TreadMarks [6]. In
ERC, a process sends all the modification to other processor
when it exits from a critical section causing unnecessary
modifications to propagate to a node that actually do not
need them. LRC eliminates this problem by sending
modification at the time of an acquire operation that
involves achieving a lock ensuring mutual exclusion [6].
But it still suffers from the problem of transferring a large
number of redundant modifications and also keeping a vast
amount of storage for messages. For reducing huge network
traffic and minimizing memory requirements, a new
modification to LRC model is introduced in this paper.

III. Background of the Paper

In LRC model, a partial ordering known as happened-
before-1 (hb1),  1hb [1] is defined among the

Kabir and Khan50

processors. This relationship is used to determine the access
sequence of processors on a shared page. To define hb1
relationship the execution of each processor is divided into
distinct time slots, known as interval. A new interval is
started each time a processor performs an acquire or a
release operation on a lock related to a shared page S. If all
accesses in interval i1 precede all accesses in interval i2, then
i1  1hb i2 . A processor P defines a vector timestamp
VP(i) for each interval i where the number of entries in Vp(i)
is equal to the total number of processors in the system. .
The entry for processor P in VP(i) is equal to i and the
entries in VP(i) for other processors correspond to the most
recent intervals where they performed modifications which
are available on P. In FLRC, the vector timestamp is
constructed using information stored in the page table of a
shared page. In this model, if the Pth entry of VP(i) is i then it
is interpreted as, “the node has received all write notices, for
all intervals of processor P with the index less than or equal
to i, during which intervals P has modified a shared page for
which the lock has been requested” [7]. For Example,
suppose, a system consists of three processors P1, P2 and P3
and P1 is going to access a shared page S. Now the vector
timestamp constructed by P1 is shown below:

Fig 1. Vector Timestamp Constructed by Processor P1

This vector timestamp shows that S was accessed in interval
4 and 5 by P2, P3 respectively and P1 is informed about these
accesses. S was accessed by P1 at interval 3 most recently.
In the proposed modification, this definition of vector
timestamp has been used.

In LRC model, to access a shared page S a processor P must
make an acquire request to the lock manager associated with
S. In the mean time, P determines the data required to
update S. P calculates VP(i) using the information about S
stored in its own page table and sends Vp(i) to the most
recent releaser, Q of the lock. On receiving Vp(i), Q consults
it’s page table to determine those intervals during which S
has been modified but P is not notified to that. It sends the
write notices for only those intervals together with the
necessary diffs to P. Q also sends its currents vector
timestamp VQ(j) to P. This is necessary to maintain the
partial ordering between the intervals of different processors
of the network.

Since a processor P must informed about all the diffs
associated with a shared page S from the most recent
releaser T before accessing S, T must maintain all previous
diffs associated with S. It causes the redundant copies of
same diff to be maintained on different nodes. Maintaining
such a large number of diffs for a particular page consumes
a large amount of memory space. Moreover, transmission of
huge number of diffs as well as all the write notice records
cause enormous network traffic. The total size of diffs
transferred is usually much larger than the overall size of the
page. These are the major limitations of LRC model that
make it inefficient.

IV. Data Structures of LRC Model

The LRC model is implemented in the TreadMarks system,
a DSM system used in the standard UNIX systems such as
SunOS and Ultrix [6]. Figure-1 shows the data structures
utilize in the TreadMarks system [6] used to calculate the
timestamp VP.

Fig. 2. Overview of the Data Structures Used in TreadMarks
System

Page Array

Page array defines the page table for each node, having an
entry for each shared page. For each page there is a list of
write notice records for each processor, maintained by the
head and tail pointers.

Proc Array

Proc array is indexed by all processors of the distributed
system. Each entry of proc array contains pointers to the
head and tail of a list of interval records.

Write Notice

A write notice is an indication that a page has been modified
in a particular interval without having the actual
modifications. If a diff corresponds to a particular write
notice is currently in the diff pool of processor, then a
pointer to this diff is present in that write notice record.
Each write notice record contains a pointer to it’s interval
record in the proc array.

Interval Record

Interval record contains a time stamp for an interval of a
particular processor. Each of the interval records contains a
pointer to a list of write notice records for that interval.

Diff Pool

Diff pool is a data structure used to store all the diff present
at a node.

V. Proposed Modification to the Existing LRC Model

In LRC model, the most up-to-date page is constructed by
combing the timely ordered diffs of different processors. It
is a time-consuming and complicated process because it
involves the transmission of large number of diffs. With
time, a shared page is accessed so many times causing a

P1 P2 P3

3 4 5

A Modified Approach to Improve the Performance of Lazy Release Consistency (LRC) Model 51

huge number of diffs to exist for each shared page. It is
common that the total size of the diffs can exceed the size of
the page due to diff accumulation.

The proposed modification overcomes the restrictions of
LRC model in a certain limit. In the modified approach,
each processor only maintains the diffs for the intervals
during which it modifies the shared page and when it
releases a lock, it sends only the critical section (CS) of that
modified shared page. The CS of a page contains the data
sharing by a number of processors. Remaining section of a
page contains processor’s local data. A processor accesses
CS between acquire and release pair and so diff contains
only the modifications performed in CS on that period.
Initially, the size of the diff may be small but with the
progress of execution time, its size becomes as large as the
size of CS. So, in LRC most of the diffs are of same size as
CS and their cumulative size is much larger than the size of
a CS of a shared page. The new modification reduces the
total size of the data transferred over the network by sending
the CS only instead of a huge number of diffs. In this
method, a processor does not need to receive and/or
maintain all the diffs of other processors that modify the
same page. Each processor only maintains its own diffs. In
case of a node failure, the diffs scattered on different nodes
can be used to reconstruct a correct copy of a page. So, this
scheme reduces the heavy network traffic as well as the
large memory requirements of the existing LRC.

VI. Achievements of the Proposed Method

1. In proposed method, the process of getting most up-to-
date page is simpler and shorter since it requests for the
transmission of single message containing CS only.

2. In existing model, the same diff can be stored at multiple
nodes requiring a huge memory storage which is very much
costly. The proposed technique reduces the memory
requirement by maintaining only the diffs that the processor
generates.

3. Because of the existence of redundant copies of same diff
on various nodes, a huge amount of traffic will be generated
at the time of garbage collection which is executed
periodically to reclaim the space used by the write notices,
interval records and diffs. The proposed technique
eliminates redundant copies of a diff and speed up the
garbage collection procedure significantly by reducing the
network congestion.

4. In DSM, thrashing occurs when the system spends a
huge amount of time transferring shared page S from one
node to another, without doing any fruitful work on S,
degrading the system performance [2]. The proposed model
is free from thrashing because every processor must obtain a
lock before accessing S. A single message containing CS is
transferred from a processor only when another processor
acquires the lock on S.

VII. Experimental Results

Two simulation programs have written using C to evaluate
the performance of existing LRC and the proposed LRC
under the same load. The input and output parameters of the
two programs are given below.

Input and Output Parameters
The input parameters:
 MAX: It is the number of nodes in the network.
Increasing MAX increases the system load.
 N: It is the number of shared pages in the system.
 L: It is the number of critical sections in N shared pages.
 TIMES: It is the number of times the procedures are
executed. In each iteration, lock manager selects a processor
randomly.
The output parameters:
 Number of messages (Msg) transferred over the network
to propagate the modifications.
 Number of diffs stored over the network

Case 1

N=20 and L=250. The output for different values of input parameters MAX and TIMES are given below.

Outpur:

Table 1. Comparisons between Existing LRC and the Proposed LRC when N=20 and L=250

Table. 1. Comparisons between Existing LRC and the Proposed LRC when N=20 and L=250

No. of
Iterations
(TIMES)

No. of
Nodes
(MAX)

No. of
Stored
Diffs

(LRC)

No. of
Stored Diffs
(Proposal)

No. of Msg Transferred
(LRC)

No. of Msg Transferred
(Proposal)

Improvement
in Msg

transfer of
proposed
LRC (%)

5 5 49 16 33 14 57.58
10 5 139 36 103 39 62.14
10 10 590 80 510 87 82.94
15 10 1010 324 886 133 84.99
20 10 1503 568 1335 377 71.76
20 15 3526 962 3264 1076 67.03
20 20 7004 3157 6647 2371 64.33
20 30 10375 4838 8590 3130 63.56

Kabir and Khan52

Chart 1. Number of diffs Transferred in Existing Chart 2. Percentage of Improvement in Message
LRC and the Proposed LRC Transfer of Proposed LRC

Case 2
N=35 and L=500. The output for the input parameters MAX and TIMES are given below.
Output:

Table. 2. Comparisons between Existing LRC and the Proposed LRC when N=35 and L=500

Chart 3. Number of diffs present in Existing LRC Chart 4. Percentage of Improvement in Storage
and the Proposed LRC Requirements of Diffs in Proposed LRC

VIII. Discussion
From the obtained result it can be stated that, for each
combination of L, N, MAX and TIMES, the proposed
method transfers far fewer messages as compared to the

existing LRC. From table 1, it is observed that for N=20,
L=250, MAX=10 and TIMES=15 the number of message
transfer is reduced by (886-133) = 753, that is 84.99%
improvement in reducing message traffic. From char 2, it
can also be observed that the percentage of improvement in

No. of
Iterations
(TIMES)

No. of
Nodes
(MAX)

No. of Stored
Diffs(LRC)

No. of Stored
Diffs (Proposal)

Improvement in Storage
of Diff s proposed LRC
(%)

No. of Messages
Transferred
(LRC)

No. of Messages
Transferred
(Proposal)

5 5 49 16 67.34 38 12
10 5 139 36 74.10 122 40
10 10 590 81 86.27 452 86
15 10 1010 185 81.68 898 131
20 10 1603 370 76.91 1360 275
20 15 3526 1265 64.12 3129 725
20 20 7004 3159 54.89 5247 1172
20 30 10330 4852 53.03 9035 2659

A Modified Approach to Improve the Performance of Lazy Release Consistency (LRC) Model 53

reducing the total no. of transferred messages in the
proposed method is steadily rose to near about 85% at (15,
10) and after that, it is gradually declined. Since there is a
relation between the no. of nodes and the no. of iterations
with the total no. of messages transferred, so whenever the
no. of nodes and the no. of iterations are increased, the no.
of messages is also increased in parallel, declining the
system performance by producing huge network traffic as
well as raising vast memory requirements. From chart 4, it
can also be perceived that the percentage of improvement in
reducing storage requirements in the proposed method is
increased to 86.27% at (10, 10) and after that, it is stepped
down slowly. The memory requirement for the proposed
modification is much less than that of LRC. So, the
proposed LRC gives a significant reduction in network
traffic as well as memory requirement than that of LRC.

IX. Conclusion

In this paper, it is examined the most widely used LRC
model and proposed a modification in order to reduce its
shortcomings for achieving the optimal system performance.
The proposed method greatly condenses the number of
message transferred over the network for keeping the
distributed memory consistent. It also decreases the amount
of storage requirement for diffs on different nodes in the
system. The experimental results demonstrate that the
proposed technique produces better result than the existing
LRC model in terms of number of messages transferred over
the network and the memory requirement of each node. So,
the new modification proposed in this paper is useful in
improving the performance of LRC model.

1. Keleher, P., Cox, A. L., and Zwaenepoel, W., 1992,

“Lazy release consistency for software distributed
shared memory”, Proceedings of the 19th Annual
International Symposium on Computer Architecture,
13-21.

2. Pradeep K. Sinha, 2001, “Distributed Operating
Systems-Concept and Design”, Prentice-Hall of India.

3. Yu, B., Huang, Z., Cranefield, S. and Purvis, M., 2004,
“Homeless and home-based lazy release consistency
protocols on distributed shared memory,” Proceedings
of the 27th Australian Computer Science Conference.

4. Lamport, L., 1979, “How to make a multiprocessor
computer that correctly executes multiprocess
programs”, IEEE Transactions on Computers, 690-691.

5. Carter, J. B., Bennett, J. K., and Zwaenepoel, W. ,
1991, “Implementation and performance of Munin,”
Proceedings of the 13th ACM Symposium on Operating
Systems Principles, 152-164.

6. Keleher, P., Dwarkadas, S., Cox, A., and Zwaenepoel,
W., 1994, “TreadMarks: Distributed shared memory on
standard workstations and operating systems”,
Proceedings of the Winter Usenix Conference, 115-131.

7. Asif Hossain Khan and Mossadek H. Kamal, 2000,
“FLRC: an improved cache-coherence protocol of
software DSM”, Dhake University of Journal of
Science, 133-140.

8. Keleher, P., 1998, “On the Importance of Being Lazy”,
Technical Report UMIACS-TR-98-06, University of
Maryland, College Park.

9. Sun, C., Huang, Z., Lei, W. J. and Sattar, A., 1997,
“Heuristic Diff Acquiring in Lazy Release Consistency
Model”, Proceedings of Asian Computing Science
Conference, Lecture Notes in Computer Science, 98-
109.

10. John B. Carter, John K. Bennett and Willy Zweanepoel,
1995, “Techniques for Reducing Consistency-Related
Communication in Distributed Shared Memory
Systems”, ACM Transaction of Computer Systems,
205-243.

Dhaka Univ. J. Sci. 58(1): 49-53 2010 (January)

