
Dhaka Univ. J. Sci. 58(1): 67-72 2010 (January)

Implementation of DFT (Direct & FFT) Using Radix-2-4 CORDIC Algorithm
Meher Nigar1 and Suraiya Pervin2

1Therap (BD) Ltd., 2Department of Computer Science and Engineering, Dhaka University, Dhaka-1000, Bangladesh

Received on 25.11.2008. Accepted for Publication on 02.06.2009

Abstract
This paper attempts to implement the fast and hardware efficient mathematical technique for computing CORDIC (Coordinate
Rotation Digital Computer) based DFT (Direct & radix-2 butterfly FFT), using original circular rotation of the mixed radix CORDIC
based method. CORDIC algorithms are hardware efficient methods of producing a wide range of trigonometric, hyperbolic, linear and
logarithmic functions using only shift and add operations. To speed up the CORDIC based DFT (Direct & radix-2 butterfly FFT)
calculation a new method has been proposed. This new scheme reduces the last 2/N CORDIC iterations to 4/N by using radix-
2-4 CORDIC algorithm, where the required precision is N. Radix-2-4 CORDIC algorithm uses radix-4 micro rotation in the second
half of the CORDIC iterations. This scheme reduces the number of iterations in the CORDIC rotation unit by about 25%. Reduction of
iterations also trims down the calculation time.

Keywords: CORDIC, DFT, FFT.

I. Introduction

Discrete Fourier Transform (DFT) [1], is a powerful
computational tool for analyzing the characteristics of
discrete-time signals in the frequency domain. A number
of papers have been published on efficient algorithms for
computing DFT. Among these, CORDIC [2] based
algorithm gained significant attention as it reduces the
number of multipliers. But it encounters the disadvantage
of large number of iterations, which impedes the speed &
performance in practical implementations, which also
makes the hardware realization costlier. Many different
versions of the classic CORDIC algorithm have been
developed to enhance the performance of computing these
elementary functions. High radix CORDIC algorithm [3]-
[6] is the outcome of such novel effort of the researchers
that is very fast and hardware effective compared to the
basic CORDIC algorithm.

The main focus of this paper is the calculation of efficient,
fast and cost effective CORDIC based DFT using direct
computation & FFT (Fast Fourier Transform) algorithm.
In this work, an attempt has been taken to introduce a new
mathematical technique to compute CORDIC based DFT.
This development is based on mixed radix CORDIC
algorithm in order to improve the speed and cost of
computation significantly while maintaining the
performance.

The organization of the remaining part of this paper is as
follows: the basic equation of DFT (Direct & FFT) is
given in section-II. Section-III deals with CORDIC
algorithm. In section-IV the radix-2-4 CORDIC based
DFT & FFT computation technique is proposed followed
by hardware analysis of the proposed method in section-
V.

II. DFT & FFT
For a complex-valued sequence )(nx of N points, the
DFT may be expressed as
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Radix-2 algorithms are by far the most widely used FFT [1]
algorithms. The equation of decimation-in-time algorithm is
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While computing FFT the basic computation performed at
every stage is to take two complex numbers, the pair ),,( qp

multiply q by k
NW , and then add and subtract the product

from p to form two new complex numbers ).,( YX So the

equations are, qWpYqWpX k
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III. The CORDIC Algorithm

In the late 1950’s J.E.Volder [2] developed the underlying
method of computing the rotation of a vector in a Cartesian
coordinate system and evaluating the length and angle of a
vector. For rotation mode, the CORDIC equations are,
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Here, i denotes the iteration step, 00 and yx are the
coordinates of the initial vector and 0z is the rotation angle,

id is specifying the direction of rotation. It can be noted that
the CORDIC method performs rotations only within 2/
and 2/ . This limitation comes from the use of 02 for the
tangent in the first iteration. However, since a sine wave is
symmetric from quadrant to quadrant, every sine value from 0
to 2 can be represented by reflecting and/or inverting the
first quadrant appropriately.

High radix CORDIC rotation

When a higher radix [3], [4] is considered, more bits of the
result are calculated each iteration, reducing the total number
of iterations. In radix r , where r is a power of two, the
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rotation angle is decomposed into a series of elementary
angles, or micro rotation angles, whose values are

n)...,1,2,......(i).(tan 1   i
ii rd . The coefficients

id can take values from the set }2/...,0,....,2/{ rr . This
is a minimally redundant coefficient set, over which each
angle may present different decompositions. For radix
higher than 4, the id coefficients are not integer powers
of two and the complexity of each iteration increases
significantly [4]. When radix-4 is used, the total number
of iterations of the CORDIC algorithm is halved. In [3] a
radix-4 CORDIC algorithm has been developed for the
rotation of a vector in circular coordinates (rotation
mode). A new selection function for the calculation of the

id coefficients has also been proposed and valid both for
carry save redundant arithmetic and nonredundant
arithmetic. The radix-4 CORDIC algorithm is given by
the following recursive equations:
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Here i denotes the iteration step, i is the angle of the
thi rotation and the rotation digit }2,1,0,1,2{ id .

00 and yx are the coordinates of the initial vector and 0z
the rotation angle. Consequently, 1ix and 1iy are the
coordinates of the vector resulting from applying 1i
micro rotations and 1iz , the angle remaining to be
rotated. The final coordinates are scaled by,
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The scale factor is not constant as it depends on the
sequence of id ’s. This factor must be evaluated for each
rotation angle and compensated to preserve the norm of
the vector. The selection function has been obtained by
using the scheme proposed in [3]. It is interesting to note
that in some cases it is better to begin the radix-4 micro
rotations from 12/  ni to have a constant scale factor
[6].
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IV. Proposed Method

Radix-2-4 CORDIC based Direct Method

Equation (1) can be written as
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Now let, Nkn /2  , )(nxx I , )(nxy R . Then (8) will
become
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In the CORDIC method the rotation by an angle  is
implemented as an iterative process consisting of a sequence
of micro rotations i such that 

i
i ; during which the

initial vector is rotated by some predetermined step angles. So,
the multiplication by the tangent term in (9) can be avoided if
the rotation angles and therefore tan are restricted such that,

i
i r tan for 1,...,2,1,0  mi and 42 orr  . More

precisely, for radix-2 CORDIC: i
i

 2tan ,
1,...,2,1,0  gi and for radix-4 CORDIC:

i
i

 4tan , 1,...,  mgi . In digital hardware this denotes
a simple shift operation. Then (9) can be written as
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The value of 
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 converges to an aggregate constant

value, 607253.0 (scale factor) when i starts at zero. Thus
(10) becomes:
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For radix-2 CORDIC: }1,1{id and for radix-4 CORDIC:
}2,1,0{ id . From the previous knowledge, it can easily

be inferred that, the calculation of DFT for each data points
(for each value of k ) can be fully implemented by mixed
CORDIC algorithm. To preserve the accuracy of the
computation 2r has been considered for the first 2/n
iterations, where n is the required precision. And in the rest

4/n iterations 4r has been considered. There by saving
4/n iteration’s time & cost as compared to the traditional

radix-2 CORDIC based DFT implementation. In performance
analysis no significant difference is seen due to this changed in
radix. The multiplication by 607253.0 can be replaced by a
simple right-shift operation i.e. multiplication by 5.0 in
hardware realization. In that case only an extra shifter is to be
added in the CORDIC block. Another important adaptation is
that, to ensure cos to converge to 607253.0 , the  must be
in the 1st or 4th quadrant of the coordinate system, that is in the
interval 00 9090   . So, if  falls in 2nd or 3rd quadrant,
it is plotted in the corresponding 2nd and 3rd quadrant and to
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reflect this change, the data sequence of input signal is
negated before entering them into the CORDIC block.

Radix-2-4 CORDIC based Radix-2 Butterfly FFT

In Radix-2 butterfly FFT, at each butterfly the
calculations performed are

NkjqepX /2 , NkjqepY /2 (12)

Considering the second part of the equation, q is
complex-valued. So, its DFT can be written as,
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As stated in direct computation of DFT, the same scheme
is also applicable in case of FFT. So, (14) finally
becomes:
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For the proper implementation 2r has been considered
for the first 2/n iterations, where n is the required
precision. And in the rest 4/n iterations 4r has been
considered. The multiplication by 607253.0 can be
replaced by a simple right-shift operation. The basic
operations in an FFT are multiplication of the complex
data inputs by the FFT coefficients at each stage in the
signal flow graph followed by their summation or

subtraction. Hence, the only thing left is to do the addition and
subtraction of the result returned from the CORDIC with the
data P . That is to perform the operation,

OUTPUTCORDICScaled pX
OUTPUTCORDICScaled pY (16)

V. Simulation & Hardware Analysis

For 64 bit precision 64 radix-2 CORDIC micro rotations are
needed. But if radix-2-4 CORDIC is used then the same
precision can be obtained by using only 48 micro rotations.
The proposed method has been simulated for different input
signals. In every case the proposed method achieves almost
the same result as in direct DFT & radix-2 butterfly FFT.

DFT (Direct) and radix-2-4 CORDIC based DFT (scale
factor 0.607253)

In the proposed method the CORDIC block is invoked 2N
times to compute N point DFT. Each invocation of CORDIC
module requires two extra multiplications to multiply the
CORDIC output by the scale factor 607253.0 . Now-a-days
table look up based approach is used to evaluate the
trigonometric functions; so, the multiplication & addition
needed to calculate these functions have been omitted in the
calculation. Each CORDIC block contains 3 adders and 2 shift
registers. So, 2N no of CORDIC invocation requires 23N
additions. Again equation (11) shows that another

)1(2 NN numbers of addition are needed. Table 1, 2 and 3
shows some comparative results, Figure 1 shows the output
signal and Figure 2 & 3 shows the hardware comparison. For
64-bit precision roughly 0.0000107364356667062495%
deviation of output result is got compared to the output of
direct DFT. Its output is almost equal to the radix-2 CORDIC
based DFT.

Table. 1. Radix-2-4 CORDIC based DFT and Direct computation of DFT.

Radix-2-4 CORDIC based DFT Direct Computation of DFT
Computation Time

amc tNNtNtfgN )1(22)( 22  am tNNtN )1(44 2 
Hardware
Consulted

additionsNN
tionsmultiplicaNkCORDICBlocN

)1(2
2 22




additionsNN
tionsmultiplicaN

)1(4
4 2



Notes:

N = equalizer order, ( N point DFT), ct = time required to perform one CORDIC iteration.

at =time required to perform one addition, mt = time required to perform one multiplication.
g = number of radix-2 iterations, f = number of radix-4 iterations

Table. 2. Radix-2 and radix-2-4 CORDIC based DFT. Where )( fgm 

Basic CORDIC based DFT Radix-2-4 CORDIC based DFT
Computation Time

amc tNNtNmtN )1(22 22  amc tNNtNtfgN )1(22)( 22 

Table. 3. Radix-2-4 CORDIC based DFT and direct computation of  DFT.

Radix-2-4 CORDIC based DFT Direct Computation of DFT Result
Multiplications 22N 24N Reduced by %50 .

Additions NN 25 2  24N Increased by )2( NN .
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Input Signal: )2cos()8sin(7 nn  

Fig.1. Comparing the two output signals (DFT, Scale factor 607253.0 )

Table.4. Radix-2-4 CORDIC based and direct computation of DFT (scale factor 0.5).

Radix-2-4 CORDIC
based DFT

Direct Computation of
DFT

Result

Multiplications NIL 24N Total elimination of multiplications.

Additions NN 25 2  24N Increased by )2( NN .

DFT (Direct) and radix-2-4 CORDIC based DFT
(scale factor 0.5)
The multiplication by 0.5 can be replaced by a simple
right-shift operation in hardware realization. So the need
for multiplication is totally eliminated. The Table 4
reflects the result. With this architecture, the simulation
program shows roughly 17% deviation in result when
radix-2-4 CORDIC based DFT is used in comparison with
direct DFT.
Traditional FFT and radix-2-4 CORDIC based FFT
(scale factor 0.607253)
As described in the proposed method, for each butterfly
one CORDIC block is needed. So, for N points FFT, the
CORDIC block is invoked NN 2log)2/( number of
times. Two multiplications are needed in the FFT
architecture to multiply the CORDIC output by the scale
factor. NN 2log)2/( numbers of CORDIC invocation

requires NN 2log)2/(*3 additions. Again equation (7)
shows that NN 2log4 additions are needed to add and
subtract the output of the CORDIC unit. Table 5, 6 and 7
shows some comparative results.  For 64 bits precision
roughly 0.000010760225177720726% deviation of output
result as compared to the output of traditional computation of
FFT. Its output is almost equal to the radix-2 CORDIC based
FFT. Figure 4 shows the comparison of the output signals and
Figure 5 & 6 shows the hardware comparison.
Traditional FFT and radix-2-4 CORDIC based FFT (Scale
factor 0.5)
In hardware realization, multiplication by 0.5 can be totally
replaced by a simple right-shift operation. The Table 8 reflects
the result. With this architecture, the simulation program
shows roughly 17% deviation in result when radix-2-4
CORDIC based FFT is used in comparison with traditional
FFT.
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Input Signal: )2cos()8sin(7 nn  

Fig.4. Comparing the two output signals (FFT, Scale factor 607253.0 )

Table. 5. Radix-2-4 CORDIC based and traditional computation of FFT.

Radix-2-4 CORDIC based FFT Traditional Computation of FFT

Computation
Time amc tNNtNNtfgNN ]log4[]log[]][log)2/[( 222  am tNNtNN ]log4[]log2[ 22 

Hardware
consulted
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Table. 6. Radix-2 and radix-2-4 CORDIC based FFT. Where )( fgm 

Basic CORDIC based FFT Radix-2-4 CORDIC based FFT
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Table. 7. Radix-2-4 CORDIC based and Traditional computation of FFT.
Radix-2-4 CORDIC based
FFT

Traditional  Computation
of FFT

Result

Multiplications NN 2log NN 2log2 Reduced by %50 .
Additions NNN 2log)4)2/3((  NN 2log4 Increased by NN 2log)2/(*3 .

Table.8. Radix-2-4 CORDIC based and Traditional computation of FFT (scale factor 0.5).

Radix-2-4 CORDIC based
FFT

Traditional  Computation of
FFT

Result

Multiplications NIL NN 2log2 Total elimination of multiplications.

Additions NNN 2log)4)2/3((  NN 2log4 Increased by NN 2log)2/(*3 .
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VI. Conclusion

The effort in this paper has been directed towards
the computation of DFT (Direct and FFT) using the
internal step by step rotations, which consists of
only shift and add operations, of the radix-2-4
CORDIC with a view to reduce the calculation
time. In this work, the computation of DFT (Direct
& FFT) based on radix-2-4 CORDIC algorithm is
proposed. The result shows that the computation of
DFT (Direct & radix-2 butterfly FFT) can be
implemented using the radix-2-4 CORDIC block.
In both cases 50% reduction in multiplication has
been achieved, by using the scale factor 0.607253.
The use of radix-2-4 CORDIC with scale factor 0.5
(which can be done by only right shifting) in
computing DFT fully eliminates the use of
multipliers which further trim down the hardware
cost and complexity tremendously. But that occurs
in cost of around 17% deviation of result to the
actual DFT result.
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