The Riemannian Metric on Tangent Bundle

Md. Showkat Ali

Department of Mathematics, Dhaka University, Dhaka -1000, Bangladesh

Email: msa417@yahoo.com

Received on 16. 04. 2009. Accepted for Publication on 19. 05.2009

Abstract

Let *M* be an*n*-dimensional Riemannian manifold and *TM* its tangent bundle. The conformal and fiber preserving vector fields on *TM* have well-known physical interpretations and have been studied by physicists and geometricians. In this paper we define a Riemannian metric \widetilde{g} on *TM*, which is in some senses more general than other metrics previously defined on *TM* and also study the conformal vector fields on (TM, \widetilde{g}) that every complete conformal vector filed on TM is homothetic and moreover every horizontal or vertical conformal vector filed on *TM* is a killing vector.

1. Introduction

Let *M* be an *n*-dimensional differential manifold with a Riemannian metric *g* and ϕ be a transformation on M. Then ϕ is called a *conformal* transformation if it preserves the angles. Let *V* be a vector field on *M* and $\{\varphi_t\}$ be the local Riemannian curvature tensor one-parameter group of local transformations on *M* generated by *V*. Then *V* is called an *infinitesimal conformal transformation* on *M* if each ϕ_t is a local conformal l transformation of *M*. It is well known that *V* is an infinitesimal conformal transformation or *conformal vector field* on *M* if and only if there is a scalar function ρ on

M such that $f{f}_V g = 2\rho g$ where $f{f}_V$ denotes Lie where $\partial_i = \frac{g}{\partial x^i}$ and K derivation [2] with respect to the vector field *V*. *V* is called *homothetic* if *ρ* is constant and is called an *isometry* or *Killing vector field* when *ρ* vanishes.

Let *TM* be the tangent bundle over *M*, and Φ be a transformation on *TM*. Then Φ is called a *fiber preserving* transformation if it preserves the fibers. Fiber preserving transformations have well known applications in Physics [1]. Let *X* be a vector field on *TM* and $\{\Phi_t\}$ the local one Known that; parameter group of local transformation on *TM* generated by *X*. Then *X* is called an *infinitesimal fiber preserving transformation* or *fiber preserving vector field* on *TM* if each Φ_t is a local fiber preserving transformation of *TM*.

Let \widetilde{g} be a Riemannian metric on *TM*. The conformal vector field *X* on *TM* is said to be *essential* if the scalar function Ω on *TM* in $f(x) = 2\Omega \tilde{g}$ depends only on (y^h) (with respect to the induced coordinates (x^i, y^i) on *TM*), has components and is said to be *inessential* if Ω depends only on (x^h) . In other words, Ω is a function on M.

II. Preliminaries

Let (M, g) be a real *n*-dimensional Riemannian manifold and (U, x) a local chart on *M*, where the induced coordinates of the point $p \in U$ are denoted by its image on \mathbf{R}^n , $x(p)$ or briefly (x^i) . Using the induced \mathbf{R}^n , Using the induced coordinates (x^i) on M , we have the local field of frames Let M be an n -dimensional Rie

ја стати на $\{ \text{on } T_pM$. Let v be a Kiemannian connection on $T M$ Let ∇ be a Riemannian connection $\lfloor c x_i \rfloor$ $\left\{\frac{\cdot}{2}\right\}$ on I_pM . Let v be a Kiemannian conn $\begin{pmatrix} 0 \end{pmatrix}$ on T M Let ∇ be a Riemannian conn ∂x_i $\partial \mid$ on T M I et ∇ be a Riemannian connect \mathbf{x}_i on T_pM . Let ∇ be a Riemannian connection [2] on

M with coefficients Γ_{ij}^k , where the indices $a, b, c, h, i, j, k, m, \cdots$ run over the range $1, 2, \cdots, n$. The Riemannian curvature tensor is defined by

 $K(X, Y)Z = \nabla_y \nabla_x Z - \nabla_x \nabla_y Z + \nabla_{[XY]} Z, \forall X, Y, Z \in X(M).$ Locally we have

$$
K_{ijk}^{m} = \partial_i \Gamma_{jk}^{m} - \partial_j \Gamma_{ik}^{m} + \Gamma_{ia}^{m} \Gamma_{jk}^{a} - \Gamma_{ja}^{m} \Gamma_{ik}^{a},
$$

where $\partial_i = \frac{\partial}{\partial x^i}$ and $K(\partial_i, \partial_j, \partial_k) = K_{ijk}^m \partial_m$. $\partial_i = \frac{\partial}{\partial x_i}$ and $K(\partial_i, \partial_j, \partial_k) = K_{ijk}^m \partial_m$.

III. The Metric \widetilde{g} On Tangent Bundle

Let (M, g) be a Riemannian manifold. The Riemannian metric *g* has components g_{ii} , which are functions of variables x^i on *M*, and by means of the dual basis it is well known that;

$$
g_1 := g_{ij} dx^i dx^j
$$
, $g_2 := 2g_{ij} dx^i \delta y^j$ and

 $g_3 = g_{ij} \delta y^i \delta y^j$ are all bilinear differential forms defined globally on *TM* . The tensor field [3]:

$$
\widetilde{g} = a g_1 + b g_2 + c g_3,
$$

 y^h) on *TM* where *a*,*b* and *c* are certain positive real numbers, has components

$$
\begin{pmatrix} a{\bf g}_{ij} & b{\bf g}_{ij} \\ b{\bf g}_{ij} & c{\bf g}_{ij} \end{pmatrix}\!,
$$

,

with respect to the dual basis of the adapted frame of *TM* . From linear algebra we have $\det \widetilde{g} = (ac - b^2)^n \det g^2$. Therefore \tilde{g} is nonsingular if $ac - b^2 \neq 0$ and positive definite if $ac - b^2 > 0$.

IV. Lie Derivative

Let *M* be an *n* -dimensional Riemannian manifold, *V* a vector field on M, and $\{\phi_t\}$ any local group of local

transformations of M generated by V . Take any tensor field *S* on *M*, and denote by $\phi_t^*(S)$ the pull-back of V^n . We have the following *S* by ϕ_t [5]. Then Lie derivation of *S* with respect to *V* is a tensor field $\mathcal{L}_{v} S$ on M defined by

$$
\pounds_{\nu} S = \frac{\partial}{\partial t} \phi_t^* (S)_{t=0} = \frac{\lim_{t \to 0} \frac{\phi_t^* (S) - (S)}{t}}{t},
$$
\n
$$
X^{\mathcal{V}} := V^{\mathcal{V}} X_{\mathcal{V}} ,
$$
\n
$$
X^{\mathcal{V}} := V^{\mathcal{V}} X_{\mathcal{V}} .
$$

on the domain of ϕ_t . The mapping \mathcal{L}_v which maps S to $f_{\nu}(S)$ is called the Lie derivative with respect to V . fiber-preserving vector fields on TM .

Suppose that *S* is a tensor field of type (n, m) . Then the components $(f_v S)^{j_1...j_n}_{i_1...i_m}$ of $f_v S$ may be expressed as [6] basis are given

$$
(\pounds_{\mathbf{v}} S)^{i_1 \dots i_n}_{i_1 \dots i_m} = V^a \partial_a S^{i_1 \dots i_n}_{i_1 \dots i_m} + \sum_{k=1}^m \partial_{i_k} V^a S^{i_1 \dots i_n}_{i_1 \dots a \dots i_m} - \sum_{k=1}^m \partial_a V^{i_k} S^{i_1 \dots a \dots i_n}_{i_1 \dots a \dots i_m} \qquad \pounds_{\mathbf{x}} X_h = (-\partial_h X^a) X_a + \{y^b X^c K^a_{hcb} - X^{\bar{b}} \Gamma^a_{hcb} \}.
$$
\n
$$
\text{II} \qquad \pounds_{\mathbf{x}} X_{\bar{h}} = \{X^b \Gamma^a_{bh} - X_{\bar{h}} (X^{\bar{a}})\} X_a,
$$

where, $S_{i_1,...,i_m}^{j_1...j_n}$ and V^u denote the com $S_{i_1,...,i_m}^{j_1...j_n}$ and V^a denote the components of *S* and III) $\mathbf{f}_X dx^h = (\partial_m X^h) dx^m$, *V .*

The local expression of the Lie derivative $f_v(S)$ in terms of covariant derivatives on a Riemannian manifold for a tensor field of type $(1, 2)$ is given by

$$
\pounds_{\mathbf{v}} S_{ji}^{h} = \mathbf{v}^{a} \nabla_{a} S_{ji}^{h} - S_{ji}^{a} \nabla_{a} \mathbf{v}^{h} + S_{ai}^{h} \nabla_{j} \mathbf{v}^{a} + S_{ja}^{h} \nabla_{i} \mathbf{v}^{a},
$$
\n(1)
$$
\mathbf{f} \times \mathbf{g}_{1} = (\pounds_{\mathbf{v}} \mathbf{g}_{ij}) d\mathbf{x}^{i} d\mathbf{x}^{j},
$$

where, $S_{j,i}^h$ and v^h are components of S and V, and II) for *h* a^v are components of cova $\nabla_a S^h_{ji}$, $\nabla_a v^h$ are components of covariant derivatives of S $\{ \pounds_V g_{ij} - g_{ij} \}$ and V, respectively.

Lemma 1. [1] The Lie bracket of adapted frame of *TM* satisfies the following relations

$$
[X_i, X_j] = y^r K_{jir}^m X_{\overline{n}}, \qquad \{ \mathbf{f}_{\nabla} g_{ij} - 2g_{mj} \nabla_i X^m + 2g_{mj} X_{\overline{i}} (X^{\overline{m}}) \} \delta y^i \delta y^j,
$$

\n
$$
[X_i, X_{\overline{j}}] = \Gamma_{ji}^m X_{\overline{n}}, \qquad \text{where } \mathbf{f}_{\nabla} g_{ij} \text{ and } \nabla_i X^m \text{ denote the components}
$$

\n
$$
[X_{\overline{j}}, X_{\overline{j}}] = 0, \qquad \text{of } \mathbf{f}_{\nabla} g \text{ and the covariant derivative of } V \text{ respectively.}
$$

where K_{ijr}^{m} denotes the components of a Riemannian

Lemma 2. [1] Let *X* be a vector field on *TM* with components (X^h, X^h) with respect to the adapted frame ${X_h, X_{\overline{h}}}.$ Then *X* is fiber-preserving vector field on *TM* if and only if X^h are functions on M.

Therefore, every fiber-preserving vector field *X* on *TM* induces a vector field $V = X^h \frac{C}{2}$ on *M*. *h* $h \quad U \quad \text{and} \quad$ x_h $V = X^h$ $\frac{C}{2}$ on *M*. ∂x_h $X^h \frac{\partial}{\partial x^h}$ on *M*.

Definition 1. Let *V* be a vector field on *M* with components V^h . We have the following vector fields on *TM* which are called respectively, complete, horizontal and vertical of *V*:

by
\n
$$
X^{C} := V^{h} X_{h} + y^{m} (\Gamma_{ma}^{h} V^{a} + \partial_{m} V^{h}) X_{h}^{-},
$$
\n
$$
\lim_{h \to 0} \frac{\phi_{t}^{*}(S) - (S)}{t},
$$
\n
$$
X^{H} := V^{h} X_{h},
$$
\n
$$
X^{V} := V^{h} X_{h}^{-}.
$$

which maps *S* to From Lemma 2 we know that X^C , X^H and X^V are fiber-preserving vector fields on *TM* .

> **Lemma 3.** Let *X* be a fiber-preserving vector field on *TM* . Then the Lie derivative of the adapted frame and its dual basis are given by:

$$
=V^{a}\partial_{a}S_{i_{1},\dots,i_{m}}^{j_{1},\dots,j_{n}}+\sum_{k=1}^{m}\partial_{i_{k}}V^{a}S_{i_{1},\dots,i_{m}}^{j_{1},\dots,j_{n}}-\sum_{k=1}^{m}\partial_{a}V^{j_{k}}S_{i_{1},\dots,i_{m}}^{j_{1},\dots,j_{n}},\qquad \mathbf{f}_{X}X_{h}=(-\partial_{h}X^{a})X_{a}+\{y^{b}X^{c}K_{hcb}^{a}-X^{\overline{b}}\Gamma_{bh}^{a}-X_{h}(X^{\overline{a}})\}X_{\overline{a}},\n\qquad \qquad \text{and } V^{a} \text{ denote the components of } S \text{ and } \qquad \text{III}\} \ \mathbf{f}_{X}X_{\overline{h}}=\{\partial_{m}X^{h}\}d\mathbf{x}^{m},\n\qquad \qquad \text{IV}\} \ \mathbf{f}_{X}d\mathbf{x}^{h}=\{\partial_{m}X^{h}\}d\mathbf{x}^{m},\n\qquad \qquad \text{IV}\} \ \mathbf{f}_{X}d\mathbf{x}^{h}=\{-y^{b}XK_{mcb}^{h}-X_{m}^{\overline{b}}\Gamma_{bm}^{h}-X_{m}(X^{\overline{h}})\}d\mathbf{x}^{m}-X_{\overline{m}}(\overline{X}^{\overline{h}})\}d\mathbf{x}^{m}.
$$
\n
$$
\qquad \text{I}(\mathbf{x}^{h})=\sum_{k=1}^{m}\sum_{k=
$$

Lemma 4. Let *X* be a fiber-preserving vector field on *TM* , which induces a vector field *V*on *M*. Then Lie derivatives $\mathbf{f}_{\mathbf{X}}\mathbf{g}_1$, $\mathbf{f}_{\mathbf{X}}\mathbf{g}_2$ and $\mathbf{f}_{\mathbf{X}}\mathbf{g}_3$ are given by:

$$
j_{a}^{j_{a}j_{i}j_{j}} , \qquad \text{I) } \mathbf{f}_{X} g_{1} = (\mathbf{f}_{V} g_{ij}) dx^{i} dx^{j} ,
$$
\n
$$
\text{V, and} \qquad \text{II) } \mathbf{f}_{X} g_{2} = 2[-g_{jm} \{y^{b} X^{c} K_{icb}^{m} - X^{\overline{b}} \Gamma_{bi}^{m} - X_{i} (X^{\overline{m}}) \} dx^{j} dx^{j} +
$$
\n
$$
\{\mathbf{f}_{V} g_{ij} - g_{jm} \nabla_{i} X^{m} + g_{jm} X_{\overline{i}} (X^{\overline{m}}) \} dx^{j} \delta y^{i} \},
$$
\n
$$
\text{Time of} \qquad \text{III) } \mathbf{f}_{X} g_{3} = -2g_{mi} \{y^{b} X^{c} K_{jcb}^{m} - X^{\overline{b}} \Gamma_{bj}^{m} - X_{j} (X^{\overline{m}}) \} dx^{j} \delta y^{i} +
$$
\n
$$
\mathbf{f}_{X} g_{3} = -2g_{mi} \{y^{b} X^{c} K_{jcb}^{m} - X^{\overline{b}} \Gamma_{bj}^{m} - X_{j} (X^{\overline{m}}) \} dx^{j} \delta y^{i} +
$$

 $[X_i, X_{\overline{j}}] = \Gamma_{ji}^m X_{\overline{m}},$ where $\mathfrak{L}_{\overline{y}} g_{ij}$ and $\nabla_i X^m$ denote the components

 $[X_{\tilde{i}}, X_{\tilde{j}}] = 0,$ of $\mathcal{L}_{V} g$ and the covariant derivative of *V* respectively.

V. Main Results

curvature tensor of *M* . **Proposition 1**. Let *X* be a complete (respectively horizontal or vertical) conformal field on *TM*. Then the scalar function $Q(x, y)$ in $\mathcal{L}_{x} \widetilde{g} = 2\Omega \widetilde{g}$ is a function of position alone (respectively $\Omega = 0$).

> **Proof.** Let *TM* be the tangent bundle over *M* with Riemannian metric \widetilde{g} and X be a complete (respectively horizontal or vertical) lift conformal vector field on TM. By definition, there is a scalar function Ω on *TM* such that

$$
\boldsymbol{\pounds}_{\boldsymbol{x}}\, \widetilde{\boldsymbol{g}} = 2\boldsymbol{\varOmega}\, \widetilde{\boldsymbol{g}}
$$

Since the complete horizontal and vertical lift vector fields are fiber preserving, by applying \mathcal{L}_r to the definition of \widetilde{g} , using lemma 4 and the fact that $dx^i dx^j$, $dx^i \delta y^j$ and $\delta y^i \delta y^j$ are linearly independent, we have following three relations

$$
a(\pounds_{\mathbf{v}} g_{ij} - 2\Omega g_{ij}) = b g_{im} (y^b X^c K_{jcb}^m - X^{\tilde{b}} \Gamma_{bj}^m - X_j (X^{\overline{m}})) \qquad \text{where } \nabla_i A_a^m \text{ is the component of the covariant derivative} + g_{jm} (y^b X^c K_{icb}^m - X^{\tilde{b}} \Gamma_{bi}^m - X_i (X^{\overline{m}})) \qquad \text{of tensor field } A.
$$
\n(2) From definition 1, $X^{\overline{m}} = A_a^m y^a$. By means of relation 3,

$$
b(\pounds_{\nu} g_{ij} - 2\Omega g_{ij}) = b g_{im} (\nabla_j X^m - X_j (X^{\overline{m}}))
$$

+ $cg_{jm} (y^b X^c K_{icb}^m - X^{\tilde{b}} \Gamma_{bi}^m - X_i (X^{\overline{m}}))$
⁽³⁾
$$
d[\pounds_{\nu} g_{ij} - 2g_{ij} - g_{im} (\nabla_j X^m - A_j^m)] = cg_{im} [y^a X^c K_{ica}^m
$$

Using relation 1, we have $\mathcal{L}_v g_{ij} = \nabla_i V_j + \nabla_j V_i$, from show that the components of A are functions of this which we obtain

$$
2\Omega g_{ij} = g_{mj} X_{\bar{i}} (X^{\bar{m}}) + g_{mi} X_{\bar{j}} (X^{\bar{m}}).
$$
 (4)
$$
c g_{im} [y^a X^c K_{ica}^m - \Gamma_{ki}^m A_{a}^k y^a - (Y^a)^a Y_{ij}^m Y_{ij}^m]
$$

Applying $X_{\bar{k}}$ to the relation 4 and using the fact that g_{ii} is a function of position alone, we have

$$
2g_{ij}X_{\overline{k}}(\Omega) = g_{mj}X_{\overline{k}}X_{\overline{i}}(X^{\overline{m}}) + g_{mi}X_{\overline{k}}X_{\overline{j}}(X^{\overline{m}})
$$

\n(5) Thus we have

By means of definition 1 for complete vector fields, and by replacing the value of $X^{\overline{m}}$ in relation 5, we have

$$
2g_{ij}X_{\bar{k}}(\Omega) = g_{mj}X_{\bar{k}}X_{\bar{i}}(y^l(\Gamma_{l\,a}^m V^a + \partial_l V^m))
$$

+ $g_{mi}X_{\bar{k}}X_{\bar{j}}(y^l(\Gamma_{l\,a}^m V^a + \partial_l V^m)).$

$$
X_{\bar{k}} = \frac{\partial}{\partial y^k}
$$
 to this relation gives

Since the coefficients of the Riemannian connection on *M*, and components of vector field V are functions of position alone, the right hand side of the above relation becomes zero, from which we have $X_{\overline{k}}(Q) = 0$. This means that From which the scalar function $\Omega(x, y)$ on *TM* depends only on the variables (x^h) .

Similarly, for vertical vector fields, by using the fact that the components of V are functions of position alone and from \overline{a} components of V are functions of position alone and from relation 4, we have $\Omega = 0$. Finally, for horizontal lift vector field by means of relation 4, we have $\Omega = 0$. Hence completes the proof.

Proposition 2. Let *M* be a connected manifold and *X* be a complete lift conformal vector field on *TM*. Then the scalar function $\Omega(x, y)$ in $f_{x} \tilde{g} = 2\Omega \tilde{g}$ is constant.

Proof. Let *X* be a complete conformal vector field on *TM* From relation 6, we get with components (X^h, X^h) , with respect to the adapted frame $\{ X_h, X_{\overline{h}} \}$. Hence

Let us put

$$
A_a^m = \Gamma_{a}^m X^h + \partial_a X^m.
$$

to the definition of \widetilde{g} , \widetilde{g} components of (1, 1) tensor field *A* components of (1, 1) tensor field *A*.

Then its covariant derivative is

$$
\nabla_i A_a^m = \partial_i A_a^m + \Gamma_{ik}^m A_a^k - \Gamma_{ia}^k A_k^m,
$$

 \tilde{b}_{Γ^m} γ ($\gamma^{\overline{m}}$) of tensor field *A*.

 \overline{m} λ we have From definition 1, $X^{\overline{m}} = A_a^m y^a$. By means of relation 3, we have

$$
= \frac{1}{(3)} \qquad \qquad \mathcal{H} \mathcal{L}_{\mathbf{v}} g_{ij} - 2 Q_{ij} - g_{im} (\nabla_j X^m - A_j^m) = c g_{jm} [y^a X^c K_{ica}^m - \Gamma_{ki}^m A_{il}^b y^a - X_i (A_{li}^n y^h)]
$$

Note that the components of *A* are functions of position alone, from which the right hand side of this relation becomes

$$
cg_{im} [y^{a} X^{c} K_{ica}^{m} - \Gamma_{ki}^{m} A_{a}^{k} y^{a} - (\frac{\partial}{\partial x^{i}} - y^{a} \Gamma_{ai}^{k} \frac{\partial}{\partial y^{k}}) (A_{i}^{m} y^{h})]
$$

= $cg_{im} [y^{a} X^{c} K_{ica}^{m} - \Gamma_{ki}^{m} A_{a}^{k} y^{a} - y^{a} \frac{\partial}{\partial x^{i}} A_{a}^{m} + \Gamma_{ai}^{k} A_{k}^{m} y^{a}$
= $cy^{a} (X^{c} K_{icaj}^{m} - g_{mj} \nabla_{i} A_{a}^{m})$

Thus we have

 $b[f_{\rm v}g_{ij}-2\Omega_{\rm g_{ij}}-g_{mi}(\nabla_jX^m-A^m_j)] = cy^a(X^cK^m_{icaj}-g_{mj}\nabla_iA^m_a)$ By means of Proposition 1 the left hand side of the above relation is a function of position alone. Applying k ∂y^k *w* and relation gives $X_{\overline{k}} = \frac{0}{2-k}$ to this relation gives ∂y^k is the contract given \mathbb{R}^n $=\frac{\partial}{\partial t}$ to this relation gives

Or,

$$
X^{c} K_{i c a j}^{m} = \nabla_{i} A_{j a}
$$

From which

$$
\nabla_i A_{ja} + \nabla_i A_{aj} = 0.
$$
 (6)

Now by replacing $X^{\overline{m}}$ in relation 4

$$
2\Omega g_{ij} = g_{mj} X_{\bar{i}} \{ y^h (\Gamma_{ha}^m X^a + \partial_h X^m) \} + g_{mi} X_{\bar{j}} (y^h (\Gamma_{ha}^m X^a + \partial_h X^m))
$$

= $g_{mi} (\Gamma_{ia}^m X^a + \partial_h X^m) + g_{mi} (\Gamma_{ja}^m X^a + \partial_j X^m)$
= $g_{mi} A_i^m + g_{mi} A_j^m$.

Applying covariant derivative ∇_k to this relation gives

$$
2g_{ij}\nabla_k\Omega=\nabla_kA_{ji}+\nabla_kA_{ij}.
$$

From relation 6, we get $\nabla_k \Omega = \frac{\partial}{\partial x_h} \Omega = 0.$

Since *M* is connected, the scalar function Ω is constant. Hence completes the proof.

m Riemannian manifold and *TM* be its tangent bundle with $A_a^m = \Gamma_{a}^m X^h + \partial_a X^m$.
metric \tilde{g} . Then every complete conformal vector field on **Theorem 1**. Let *M* be a connected *n*-dimensional

 $X^{c} K_{i c a j}^{m} - g_{m j} \nabla_{i} A_{a}^{m} = 0$.

TM is homothetic, moreover, every horizontal or vertical conformal vector field on *TM* is a killing vector.

Proof. Let *M* be an *n* dimensional Riemannian manifold. *TM* its tangent bundle with the metric \widetilde{g} and *X* a complete (respectively horizontal or vertical) conformal vector field on *TM*. Then by means of Proposition 1 the scalar function $\Omega(x, y)$ in $f_{x} \tilde{g} = 2\Omega \tilde{g}$ is a function of position alone (respectively $\Omega = 0$), and by means of Proposition 2 it is constant. Thus, every complete conformal vector field on *TM* is homothetic and every horizontal or vertical conformal vector field on *TM* is a Killing vector. Hence completes the proof.

Theorem 2. Let *M* be a connected *n*-dimensional
Piomonnion monifold and *TM* be its tangent bundle with 2. Riemannian manifold and *TM* be its tangent bundle with metric \widetilde{g} . Then every inessential fiber preserving vector field on *TM* is homothetic.

Proof. Let *X* be an inessential fiber preserving conformal vector field on *TM* with components (X^h, X^h) , with *h Meanwhile K* (1996) Quantity respect to the adapted frame $(X_h, X_{\overline{h}})$. Using the same transformations of the tanger argument in proof of Proposition 1, it is obvious that we have relations 2, 3 and 4. From relation 4, we have

$$
\Omega g_{ij} = g_{mi} X_{\bar{i}} (X^m).
$$

Since $Q(x, y)$ in $f(x, \tilde{g}) = 2Q \tilde{g}$ is supposed to be a ^{5.} function of position alone, by applying $X_{\bar{i}}$ to the above relation we have

$$
X_{\bar{z}}(X_{\bar{z}}(X^{\overline{m}}))=0.
$$

Applying $X_{\bar{i}}$ to relation 4 again and using above relation gives

$$
X_{\bar{i}}(X_{\bar{j}}(X^{\overline{m}}))=0.
$$

Thus we can write

$$
X^{\overline{m}} = \alpha_a^m y^a + \beta^m, \tag{7}
$$

where α_n^m and β^m are certain functions of position alone. Replacing relation 7 in relation 3, we have

$$
b(\pounds_{\nu}g_{ij} - 2\Omega g_{ij}) = bg_{im}(\nabla_j X^m - \alpha_j^m) + cg_{jm}(y^b X^c K_{icb}^m)
$$

$$
- y^a \alpha_a^b \Gamma_{bi}^m - \beta^b \Gamma_{bi}^m - y^a \frac{\partial}{\partial x^i} \alpha_a^m - \frac{\partial}{\partial x^i} \beta^m + y^a \Gamma_{ai}^k \alpha_a^m)
$$

$$
= bg_{im}(\nabla_j X^m - \alpha_j^m) + cg_{jm}(y^b X^c K_{icb}^m - y^a \nabla_i \alpha_a^m) - cg_{jm} \nabla_i \beta^m
$$

Therefore

 $b(\pounds_{\!\scriptscriptstyle\chi} g_{ij}-2Q_{\!\scriptscriptstyle\chi\!j}-g_{im}(\nabla_{\!j}X^m{-}\alpha_j^m)) + c g_{jm}\nabla_i\pmb\beta^m {=} c g_{jm}\mathcal{Y}^a(X^{\scriptscriptstyle\chi} X^m_{ica}-\nabla_i\pmb\alpha_a^m).$ The left hand side of this relation is a function of position alone. From which by applying $X_{\overline{k}}$ we have

$$
X^{c} K_{i c a}^{m} = \nabla_{i} \alpha_{a}^{m} \tag{8}
$$

Replacing relation 7 in relation 4 we find

$$
2\Omega g_{ij} = \alpha_{ji} + \alpha_{ij}.
$$

The covariant derivative of this relation and using relation 8 gives

$$
\nabla_k \Omega = \frac{\partial}{\partial x_h} \Omega = 0.
$$

Since *M* is connected, then the scalar function Ω on *M* is constant. This completes the proof of Theorem 2.

- 1. Arnol'd, V. I., Mathematical Methods of Classical Mechanics, Springer Verlag, 1978.
- 2. Chern, S. S., Lam, K. S. and Chen, W.H., Lectures on Differential Geometry, World Scientific, 2000.
- 3. Nakahara, M. (1990), Geometry Topology and Physics, Physics Institute, Faculty of Liberal
	- Arts Shizuoka, Japan, Bristol and New York, Admin Higler.
- 4. Yamauchi, K. (1995), On infintesimal conformal transformations of the tangent bundles over

Riemannian manifolds. Ann. Rep. Asahikawa Med. Coll., 16, 1-6 and (1996), Ann. Rep.

 $Qg_{ii} = g_{mi} X_{\overline{i}} (X^{\overline{m}})$. Asahikawa Med. Coll., 17, 1-7, and (1997), Ann. Rep. Asahikawa Med. Coll., 18, 27-32.

> Yano, K & Ishihara, S. (1973). Tangent and Cotangent Bundles. Department of Mathematics

Tokyo Institute of Technology, Marcel Dekker, Tokyo, Japan.

 $X_{\overline{i}}(X_{\overline{i}}(X^{\overline{m}})) = 0.$ fields and connection to tangent bundle I, General theory. $\overline{f}_i(X_{\overline{i}}(X^m)) = 0.$ helds and connection to tangent b J_{our} . Math. Soc. Japan, 18194-210. 6. Yano, K. & Kobayashi, H. (1996). Prolongations of tensor