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Abstract
Let M be an n-dimensional Riemannian manifold and TM its tangent bundle. The conformal and fiber preserving vector fields on TM
have well-known physical interpretations and have been studied by physicists and geometricians. In this paper we define a
Riemannian metric g~ on TM, which is in some senses more general than other metrics previously defined on TM and also study the

conformal vector fields on )~,( gTM that every complete conformal vector filed on TM is homothetic and moreover every

horizontal or vertical conformal vector filed on TM is a killing vector.

1. Introduction

Let M be an n-dimensional differential manifold with a
Riemannian metric g and  be a transformation on M. Then
 is called a conformal transformation if it preserves the

angles. Let V be a vector field on M and }{ t be the local
one-parameter group of local transformations on M
generated by V. Then V is called an infinitesimal conformal
transformation on M if each t is a local conformal
transformation of M. It is well known that V is an
infinitesimal conformal transformation or conformal vector
field on M if and only if there is a scalar function  on

M such that gg 2£ V  where V£ denotes Lie
derivation [2] with respect to the vector field V. V is called
homothetic if ρ is constant and is called an isometry or
Killing vector field when ρ vanishes.

Let TM be the tangent bundle over M, and Φ be a
transformation on TM. Then Φ is called a fiber preserving
transformation if it preserves the fibers. Fiber preserving
transformations have well known applications in Physics
[1]. Let X be a vector field on TM and }{ t the local one
parameter group of local transformation on TM generated by
X. Then X is called an infinitesimal fiber preserving
transformation or fiber preserving vector field on TM if
each t is a local fiber preserving transformation of TM.

Let g~ be a Riemannian metric on TM. The conformal
vector field X on TM is said to be essential if the scalar
function Ω on TM in gg ~2~£ X  depends only on )( hy
(with respect to the induced coordinates ),( ii yx on TM),

and is said to be inessential if  depends only on ).( hx In
other words, Ω is a function on M .

II. Preliminaries

Let ),( gM be a real n -dimensional Riemannian manifold
and ),( xU a local chart on M, where the induced
coordinates of the point Up are denoted by its image on

Rn, )( px or briefly )( ix . Using the induced

coordinates )( ix on M , we have the local field of frames
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III. The Metric g~ On Tangent Bundle

Let ),( gM be a Riemannian manifold. The Riemannian

metric g has components ijg , which are functions of

variables ix on M, and by means of the dual basis it is well
known that;

ji
ij dxdxgg :1 , ji

ij ydxgg 2:2  and
ji

ij yygg :3 are all bilinear differential forms defined

globally on TM . The tensor field [3]:
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on TM where ba, and c are certain positive real numbers,
has components
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with respect to the dual basis of the adapted frame of TM .
From linear algebra we have 22 det)(~det gbacg n .

Therefore g~ is nonsingular if 02  bac and positive

definite if 02  bac .

IV. Lie Derivative
Let M be an n -dimensional Riemannian manifold, V a
vector field on M , and  t any local group of local
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transformations of M generated by V . Take any tensor

field S on M , and denote by )(St
 the pull-back of

S by t [5]. Then Lie derivation of S with respect to V is a

tensor field S£v on M defined by

t
)S()S(

0t
lim

)S(
t

S£ t
0ttv












 
 ,

on the domain of t . The mapping v£ which maps S to

)S(£v is called the Lie derivative with respect to V .

Suppose that S is a tensor field of type )m,n( . Then the

components n
m

jj
iiS ...

...v
1

1
)(£ of S£v may be expressed as [6]
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where, n1

m1

j,.,j
i,...,iS and aV denote the components of S and

.V

The local expression of the Lie derivative )S(£v in terms
of covariant derivatives on a Riemannian manifold for a
tensor field of type (1, 2) is given by
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where, h
ijS and hv are components of S and V, and

h
a

h
ija v,S  are components of covariant derivatives of S

and V, respectively.

Lemma 1. [1] The Lie bracket of adapted frame of
TM satisfies the following relations

,],[ m
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m
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where m
jirK denotes the components of a Riemannian

curvature tensor of M .

Lemma 2. [1] Let X be a vector field on TM with

components ),( hh XX with respect to the adapted frame

}.,{ hh XX Then X is fiber-preserving vector field on

TM if and only if hX are functions on M .

Therefore, every fiber-preserving vector field X on

TM induces a vector field
h

h

x
XV



 on M.

Definition 1. Let V be a vector field on M with components
hV . We have the following vector fields on TM which are

called respectively, complete, horizontal and vertical of V:

,)(: h
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,: h
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From Lemma 2 we know that CX , HX and VX are
fiber-preserving vector fields on TM .

Lemma 3. Let X be a fiber-preserving vector field on TM .
Then the Lie derivative of the adapted frame and its dual
basis are given by:
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Lemma 4. Let X be a fiber-preserving vector field on TM ,
which induces a vector field Von M. Then Lie derivatives

,£ 1X g 2X£ g and 3X£ g are given by:
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where ijgV£ and m
i X denote the components

of gV£ and the covariant derivative of V respectively.

V. Main Results

Proposition 1. Let X be a complete (respectively horizontal
or vertical) conformal field on TM. Then the scalar function

)y,x( in g~2g~£x  is a function of position alone

(respectively 0 ).

Proof. Let TM be the tangent bundle over M with
Riemannian metric g~ and X be a complete (respectively
horizontal or vertical) lift conformal vector field on TM. By
definition, there is a scalar function  on TM such that

g~2g~£x 
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Since the complete horizontal and vertical lift vector fields
are fiber preserving, by applying x£ to the definition of g~ ,

using lemma 4 and the fact that ji dxdx , ji ydx  and
ji yy  are linearly independent, we have following three

relations
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Using relation 1, we have ijjiijv VVg£  , from
which we obtain

).X(Xg)X(Xgg2 m
jmi

m
imjij  (4)

Applying kX to the relation 4 and using the fact that ijg is
a function of position alone, we have
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m
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(5)

By means of definition 1 for complete vector fields, and by
replacing the value of mX in relation 5, we have
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Since the coefficients of the Riemannian connection on M,
and components of vector field V are functions of position
alone, the right hand side of the above relation becomes
zero, from which we have .0)(X k  This means that

the scalar function )y,x( on TM depends only on the

variables ).x( h

Similarly, for vertical vector fields, by using the fact that the
components of V are functions of position alone and from
relation 4, we have 0 . Finally, for horizontal lift
vector field by means of relation 4, we have 0 .
Hence completes the proof.

Proposition 2. Let M be a connected manifold and X be a
complete lift conformal vector field on TM. Then the scalar
function )y,x( in g~2g~£x  is constant.

Proof. Let X be a complete conformal vector field on TM
with components )X,X( hh , with respect to the adapted

frame }X,X{ hh .

Let us put
m

a
hm

ha
m
a XXA   .

The coordinate transformation rule implies that m
aA are the

components of (1, 1) tensor field A.

Then its covariant derivative is
m
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k
ai

k
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m
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m
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m
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where m
ai A is the component of the covariant derivative

of tensor field A.

From definition 1, am
a

m yAX  . By means of relation 3,
we have
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Note that the components of A are functions of position
alone, from which the right hand side of this relation
becomes
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Thus we have
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By means of Proposition 1 the left hand side of the above
relation is a function of position alone. Applying

kk y
X




 to this relation gives
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Now by replacing mX in relation 4
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Applying covariant derivative k to this relation gives

.AAg2 jikijkkji  

From relation 6, we get .0
xh

k 



 

Since M is connected, the scalar function  is constant.
Hence completes the proof.

Theorem 1. Let M be a connected n-dimensional
Riemannian manifold and TM be its tangent bundle with
metric g~ . Then every complete conformal vector field on



Md. Showkat Ali126

TM is homothetic, moreover, every horizontal or vertical
conformal vector field on TM is a killing vector.

Proof. Let M be an n dimensional Riemannian manifold.
TM its tangent bundle with the metric g~ and X a complete
(respectively horizontal or vertical) conformal vector field
on TM. Then by means of Proposition 1 the scalar function

)y,x( in g~2g~£x  is a function of position alone

(respectively 0 ), and by means of Proposition 2 it is
constant. Thus, every complete  conformal vector field on
TM is homothetic and every horizontal or vertical conformal
vector field on TM is a Killing vector. Hence completes the
proof.

Theorem 2. Let M be a connected n-dimensional
Riemannian manifold and TM be its tangent bundle with
metric g~ . Then every inessential fiber preserving vector
field on TM is homothetic.

Proof. Let X be an inessential fiber preserving conformal

vector field on TM with components )X,X( hh , with

respect to the adapted frame )X,X( hh . Using the same
argument in proof of Proposition 1, it is obvious that we
have relations 2, 3 and 4. From relation 4, we have

).X(Xgg m
imiij 

Since )y,x( in g~2g~£x  is supposed to be a

function of position alone, by applying iX to the above
relation we have
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Applying iX to relation 4 again and using above relation
gives
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Replacing relation 7 in relation 3, we have
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The left hand side of this relation is a function of position
alone. From which by applying kX we have
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Replacing relation 7 in relation 4 we find
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The covariant derivative of this relation and using relation 8
gives

.0
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Since M is connected, then the scalar function  on M is
constant. This completes the proof of Theorem 2.
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