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Abstract
Let M be an n-dimensional Riemannian manifold and 7M its tangent bundle. The conformal and fiber preserving vector fields on 7M
have well-known physical interpretations and have been studied by physicists and geometricians. In this paper we define a

Riemannian metric & on 7M, which is in some senses more general than other metrics previously defined on 7M and also study the

conformal vector fields on (T M , §) that every complete conformal vector filed on TM is homothetic and moreover every

horizontal or vertical conformal vector filed on 1M isa killing vector.

1. Introduction
Let M be an n-dimensional differential manifold with a
Riemannian metric g and ¢ be a transformation on M. Then

@ is called a conformal transformation if it preserves the

angles. Let // be a vector field on M and {@,} be the local

one-parameter group of local transformations on M
generated by V. Then V is called an infinitesimal conformal
transformation on M if each ¢, is a local conformal

transformation of M. It is well known that V is an
infinitesimal conformal transformation or conformal vector
field on M if and only if there is a scalar function p© on

M such that £,g=2pg where £, denotes Lie

derivation [2] with respect to the vector field V. V is called
homothetic if p is constant and is called an isometry or
Killing vector field when p vanishes.

Let TM be the tangent bundle over M, and ® be a
transformation on 7M. Then ® is called a fiber preserving
transformation if it preserves the fibers. Fiber preserving
transformations have well known applications in Physics
[1]. Let X be a vector field on TM and {®,} the local one

parameter group of local transformation on 7M generated by
X. Then X is called an infinitesimal fiber preserving
transformation or fiber preserving vector field on TM if
each @, is alocal fiber preserving transformation of 7M.
Let g be a Riemannian metric on 7M. The conformal
vector field X on TM is said to be essential if the scalar
function Q on TM in £, g = 2Qg depends only on (")
(with respect to the induced coordinates (x', ") on TM),
and is said to be inessential if  depends only on (x").In
other words, Q2 is a function on M .

II. Preliminaries

Let (M, g) be areal n-dimensional Riemannian manifold
and (U,x)a local chart on M, where the induced
coordinates of the point p € U are denoted by its image on
R, x(p)or briefly(x').

coordinates (x') on M , we have the local field of frames

Using the induced

{8} on T',M . Let V be a Riemannian connection [2] on
Ox;

M with where the indices

1,2,---,n. The

. k
coefficients Fij ,

a,b,c,h,i, j,k,m,---run over the range
Riemannian curvature tensor is defined by
K(X,Y)Z=V ,V,Z-V ,V,Z+V ZYX,Y,Z e X(M).

Locally we have

m  __ m m m a m a,
Kijk - airjk _ajrik +ria ij _rjarik >

where 0, 2% and K(0,,0,,0,)=K};0,,

IIL. The Metric g On Tangent Bundle

Let (M,g)be a Riemannian manifold. The Riemannian

metric g has components g, which are functions of

variables X' on M, and by means of the dual basis it is well
known that;

g, =g dx'dx’ g, =2g;dx'$” and

g3 = g,»jéjziﬁyj are all bilinear differential forms defined
globally on TM . The tensor field [3]:

g =ag, +bg, +cg;,

on TM where a,band c are certain positive real numbers,
has components

ag,; bg;
bg,; cg;
with respect to the dual basis of the adapted frame of TM .
From linear algebra we have det § =(ac — b* )" detg 2,

E

Therefore g is nonsingular if ac —b* # 0and positive
definite if ac —b* > 0.

IV. Lie Derivative
Let M be an 7 -dimensional Riemannian manifold, V' a

vector field on M , and {¢,}any local group of local
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transformations of M generated by V' . Take any tensor
field Son M, and denote by @, (S) the pull-back of
S'by @,[5]. Then Lie derivation of S with respectto V' is a
tensor field £,.5 on M defined by

8 . lim ¢ (S)-(S)
£VS:_¢t (S)t:l) = >

ot t—>0 t
on the domain of ¢,. The mapping £, which maps S to
£, (S )is called the Lie derivative with respect to V.

Suppose that S is a tensor field of type (7,m ). Then the
components (£, S)[]lllj" of £ § may be expressed as [6]

m
Jidn 79 Jisealn a Qfisafn
(£vS)i1,.“im _V aa‘s;l,.“jm +ZaikV S
k=1

Byl diy

m
_ Jie QUstlssfin
So s
k=1

By llyediy

>

,,,,,,,,

V.

The local expression of the Lie derivative £, ('S )in terms

of covariant derivatives on a Riemannian manifold for a
tensor field of type (1, 2) is given by

h a h a h h a h a
£,8,=vV, S8, =8,V +8, Vv +5 Voo,

1)
h h
where, S ji and Vv are components of S and V, and
h . "
v.,S§ j.'l. ,V, v "are components of covariant derivatives of S

and V, respectively.

Lemma 1. [I] The Lie bracket of adapted frame of
TM satisfies the following relations

[Xi:Xj] :erj"'iIer:
[XlaXJ’] :F;?Xﬁ:
[X{7X7]:Oa

where K;';r denotes the components of a Riemannian
curvature tensor of M .

Lemma 2. [1] Let X be a vector field on 7M with
components (X", X") with respect to the adapted frame
{X,. X P }. Then X is fiber-preserving vector field on

TM if and only if X" are functions on M .

Therefore, every fiber-preserving vector field X on

0
TM induces a vector field V = X" 8_ on M.
X,
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Definition 1. Let V' be a vector field on M with components

V" . We have the following vector fields on TM which are
called respectively, complete, horizontal and vertical of V:

XC=V'X, +y" TV +0,V"X,,
X"T=v'x,,
X" =v'x,.
From Lemma 2 we know that X<, X and X" are

fiber-preserving vector fields on TM .

Lemma 3. Let X be a fiber-preserving vector field on TM .
Then the Lie derivative of the adapted frame and its dual
basis are given by:

D
£XXh :(_ath)Xa +{beCKZcb _Xbrbah _Xh(Xa)}Xaa
m £, X, = (X'T8 - X, (X)X,

m) £,dx" =0, X" )dx",
V) £ =0/ XK ~XT ~X (XY@~ —X (X B

Lemma 4. Let X be a fiber-preserving vector field on 7M ,
which induces a vector field Von M. Then Lie derivatives

£.g,,£4g, and £ g, are given by:

D £y g = (£, g,)dx'dx’,

) £48, =2-g, ' XK}, — XTI} - X,(X")dx dx’ +
{£y8; — €V X"+, X (X" )}dx' &',

1 £yg, =-2g, /XK, — XTI - X (X")dr's/ +
£08, =28,V XK1, —X'T) =X (X") XS/ +
{£yg, —28, V. X" +2g, X (X" )58,

where £, g, andV, X" denote the components

of £V g and the covariant derivative of ¥ respectively.

V. Main Results

Proposition 1. Let X be a complete (respectively horizontal
or vertical) conformal field on 7M. Then the scalar function

(x,y) in £ g =242g is a function of position alone
(respectively £2 = 0).

Proof. Let TM be the tangent bundle over M with
Riemannian metric € and X be a complete (respectively

horizontal or vertical) lift conformal vector field on TM. By
definition, there is a scalar function {2 on TM such that

£§=20%
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Since the complete horizontal and vertical lift vector fields
are fiber preserving, by applying £ to the definition of g,
using lemma 4 and the fact that dx'dx/ dxi@/j and

(’)‘yl@/j are linearly independent, we have following three
relations

a(£, g, —2Qg,) =bg, (V' XKI\, — XTI} - X (X™))
+ 8 (VP XKD — XTI~ X, (X™))
@
b(£vgi,» -2Qg,)=bg,, (VjX’" _Xj (X)) .
+eg,, (VXK - XTI} - X,(X™)

Using relation 1, we have £,g, =V, V,+V V,, from

which we obtain
24%, =gmez(Xn7)+gm1—X;(Xﬁ)- “4)

Applying X ;o the relation 4 and using the fact that g i is

a function of position alone, we have
2gleI;(‘(")’) = gij];le(Xﬁ)+ gszEX;(XE)
(%)

By means of definition 1 for complete vector fields, and by

replacing the value of X " in relation 5, we have
28, X () =g, X X; (' {@Tve+ovm))
+ 8, X XAV +0, ™),

Since the coefficients of the Riemannian connection on M,
and components of vector field V are functions of position
alone, the right hand side of the above relation becomes

zero, from which we have X (€2 ) = (. This means that
the scalar function £2('x,y ) on TM depends only on the

variables (x" ).

Similarly, for vertical vector fields, by using the fact that the
components of V are functions of position alone and from

relation 4, we have £2 = (). Finally, for horizontal lift

0Q2=0.

vector field by means of relation 4, we have
Hence completes the proof.

Proposition 2. Let M be a connected manifold and X be a
complete lift conformal vector field on TM. Then the scalar

function £2(x,y)in £ g =242 g is constant.

Proof. Let X be a complete conformal vector field on TM
with components (X", X" ), with respect to the adapted
frame { X, X }.

Let us put

Ar=rX"+0,X".
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The coordinate transformation rule implies that A;” are the

components of (1, 1) tensor field 4.

Then its covariant derivative is

viA;n :aiA;n _{_1—;7:14: _Fil;Al:nﬂ

where VA" is the component of the covariant derivative
of tensor field 4.

From definition 1, X" = A" y* . By means of relation 3,

we have
HE, g, X%, g, (VX" —A)=cg, [V XK, Ti Ay ~X(4Y)]

Note that the components of 4 are functions of position
alone, from which the right hand side of this relation
becomes

avyecpm m a 0 a 0 m
€[ V' XK, ~ T[4,y —(g—y Ckia?)(/lh by

=cg,, [Y' XK,

m ¢ a a a m m a
_FkiA:y -y gAa +FakiAky

J

= cya(XCKincl‘aj _gmjViAt:n)

Thus we have

b[£vgij _2!%[]' _gmi(vam _Ajm)] :cya(XcK’Zaj _gmjviA;n)
By means of Proposition 1 the left hand side of the above
relation is a function of position alone. Applying

X P = 8_k to this relation gives

Y
XK

icaj _gmjViA;n :0’
Or,
XCKi’Zaj :ViAja

From which

VA, +V.A, =0. (©6)

Now by replacing X ™ in relation 4

208, = g, XAV (I X" +0,X" )} +g, X (¥ ([nX"+8,X"))
=&u( g X +0,X" )+ g, ([7.X" +0,X")
=g, A" +gn1iA;n'

Applying covariant derivative V, to this relation gives
2¢,V, 2=V, A4, +V A,

v.o-"q0-

From relation 6, we get =
ox,

Since M is connected, the scalar function (2 is constant.
Hence completes the proof.

Theorem 1. Let M be a connected n-dimensional
Riemannian manifold and 7M be its tangent bundle with

metric § . Then every complete conformal vector field on
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TM is homothetic, moreover, every horizontal or vertical
conformal vector field on 7M is a killing vector.

Proof. Let M be an n dimensional Riemannian manifold.
TM its tangent bundle with the metric g and X a complete

(respectively horizontal or vertical) conformal vector field
on 7M. Then by means of Proposition 1 the scalar function

(x,y)in £ g =2£2g is a function of position alone

(respectively £2 = ()), and by means of Proposition 2 it is
constant. Thus, every complete conformal vector field on
TM is homothetic and every horizontal or vertical conformal
vector field on 7M is a Killing vector. Hence completes the

proof.

Theorem 2. Let M be a connected n-dimensional
Riemannian manifold and 7M be its tangent bundle with

metric @ . Then every inessential fiber preserving vector
field on TM is homothetic.

Proof. Let X be an inessential fiber preserving conformal
vector field on TM with components (X", X" ), with
respect to the adapted frame (X, X ). Using the same

argument in proof of Proposition 1, it is obvious that we
have relations 2, 3 and 4. From relation 4, we have

[Qggj = gmiXZ(Xﬁ)-

Since €2(x,y) in £ g =2€2gis supposed to be a
function of position alone, by applying X ;to the above
relation we have

X(X:(X™))=0.

Applying X ; to relation 4 again and using above relation

gives
moyy —
X (X,(X"))=0
Thus we can write
X" =ay"+p", (M
where &' and " are certain functions of position alone.
Replacing relation 7 in relation 3, we have
bt, g, —290g,)=bg,, (V X" ~a])+cg,, (v XK},
0 0

m

a,  bym bym a
—yia, ). =BT, — 24 -
y a“bi ﬂ bi y ax, a ax,

ﬂm + y(ll—*akialin)

=bg,, (VjX'” —a}")+cgjm (beCK[fb -y'V.al') —cgij“B”’

Therefore

vagy _2‘(%.11 _g})n(V/Xn1 _¢?1))+ngmviﬂn :c‘g_}m,ya(Xc i:a _V’-(i:),

The left hand side of this relation is a function of position
alone. From which by applying X ; we have

XcKirZa

=V.,a” 8)

Replacing relation 7 in relation 4 we find
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20g,; =a; +a;.

The covariant derivative of this relation and using relation §
gives

vV, Q2 :i[) =0.
ox,

Since M is connected, then the scalar function {2 on M is
constant. This completes the proof of Theorem 2.
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