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Abstract

In this paper, we consider a basic resource-based single species model in a well-stirred chemostat that incorporates general response
function. Conditions for positivity, boundedness and persistence of solutions and the existence of nonnegative steady states are given.
Local stability of steady states are studied by using the Routh-Hurwitz criterion.  Global stability of the steady states are also
presented. Computer algebra system MATHEMATICA is used extensively for symbolic and numerical simulations.

Key words: chemostat; local stability; global stability; persistence.

I. Introduction

Modeling microbial growth is a problem of special interest
in mathematical biology and theoretical ecology. The device
‘CHEMOSTAT’ is a laboratory apparatus used for the
continuous culture of the microorganisms. It is important in
ecological studies because the mathematics is tractable and
the relevant experiments are possible. The purpose of this
paper is to study the asymptotic behavior of single species
model in a well-stirred chemostat. Our model consists of a
system of two autonomous differential equations. This paper
extends the work done by Kapur [2]. For a detailed
description of a chemostat, the general formulation of our
model and for various mathematical methods for analyzing
chemostat models, we refer the reader to [2], [4], [5] and
[6].

This paper is organized as follows. In section II, the model
is described. In section III, the results on the positivity and
boundedness of solutions are presented. An existence and
the local stability of steady states are studied in section IV.
Section V deals with global stability of steady states and
persistence analysis. Numerical simulations and discussion
are carried out in the last section.

II. The Model
We assume that the population of microorganism consumes
the nutrient in the chemostat. A system of equations is
considered in this paper:
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The functions )(ts and )(tp denote respectively the
concentration (weight per unit volume) of the growth
limiting nutrient and of the nutrient-sensitive microorganism
in the chemostat at time t . 0s represents the input
concentration of growth limiting nutrient; )(su and )(sF
represent the specific per capita nutrient uptake function and
the specific per capita growth rate of microorganism on
nutrient respectively; D is the dilution rate of the
chemostat;  denotes the specific death rate of

microorganism. If the death rate of microorganism is
insignificant, then the only loss of microorganism is due to
“washout” at the same rate that the nutrient is lost. In this
case, we assume that the death rate is not negligible, thus the
removal rate of microorganism will be the sum of D and
the death rate. We specially assume that nutrient is
nonreproducing, input concentration and dilution rate are
constants and that the mixing in the vessel is perfect. In our
model, we shall consider the following expression relating
growth and uptake as [2]
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where  is yield constant, represents the conversion factor
of nutrient to microorganism.

We assume that the function F satisfies the following:

  RRF : is continuously differentiable, (3)
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F is monotonically increasing, (5)
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We begin by scaling the equation (1) by )()( 0 tssts  ,

/Dtt  and )()( 0 tpstp  .

Then we obtain the following differential equations:
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It is observed that f satisfies (3)-(6).

III. Preliminaries

The positivity and boundedness of solution are considered in
the following two lemmas.
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Lemma 3.1: The solutions )(),( tpts of (7) are positive
and for large t , 1)( ts .

Proof: Suppose it is not true that 0)( ts for all 0t .

Let }0)(&0:min{1  tsttt . Then

),0[,0)( 1ttts  . But from the first equation of (7),

we have 01)( 1  ts . That is, 0)(  ts on a

neighborhood of 1t . This implies there exists 0 such

that )(ts is increasing on ),( 11   tt . Therefore we

have )()2/(0 11 tsts   , a contradiction. Thus
0)( ts for all 0t . Again, from the second equation of

(7) we have pDsftp ))(()( 1 . This gives
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dDsfptp  , which shows that

0)( tp for all 0t . Therefore, the system (7) with
positive initial conditions at 0t produces positive
solution for 0t . Finally, from the first equation of (7),
we have )(1)( tsts  for 0t . This implies

]exp[)1)0((1)( tsts  and hence if t becomes
large then 1)( ts . This completes the proof.

Lemma 3.2: For 0 , the solutions )(),( tpts of (7)
satisfy
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for large t , where

},1{ 1max max DD  and },1{ 1min min DD  (9)

Proof: Let )()()( tptstz  . From (7) we have
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This leads to )(D-1)()(1 minmax tztztzD  .

Solving the differential inequality, we obtain
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Therefore, if t becomes large then for 0 ,
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completes the proof.

IV. Steady states and their local Stability

The model (7) has two steady states. These are )0,1(0 E
and )/)1(,( 1DE ssc   , denote the wash-out steady

state and the interior steady states in the ),( ps -plane,

where s is defined as the unique solution of 1)( Dsf  .
To discuss the existence of steady states, their components
must be nonnegative. Since all the components of the
washout steady state are nonnegative, 0E always exists.

Since f is increasing with 0)0( f , s exists, satisfying

10  s and

)1()( 11 fDDsf  .

In this case, there is an interior steady state cE , otherwise

no such steady state exists. The parameter s represents the
break-even concentration value of the nutrient where
derivative of p is zero.

Remark: From (7), we get
)()(1)()( 1 tpDtstpts  so that if PS and

are steady state values, then 11  PDS and hence all

steady state values lie on the line 11  pDs in the
nonnegative cone of the ),( ps -plane.

Now, the local stability of the steady states 0E and cE will
be investigated by studying the eigenvalues of the associated
Jacobian matrices. The Jacobian matrix of (7) takes the
form:
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Theorem 4.1: If 1s , then only 0E exists and is

locally asymptotically stable. If 1s , then both 0E and

cE exist, 0E is unstable and cE is locally asymptotically
stable.

Proof: At 0E ,
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and the eigenvalues of )( 0EJ are 011 

and 12 )1( Df  .

They are all negative if and only if 1s and therefore

0E is locally asymptotically stable. Otherwise, 0E is
unstable.

At cE , the Jacobian matrix takes the form
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The eigenvalues of )( cEJ satisfy the equation
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where
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and 0)()()1())(( 12  sss ffEJDeta  if

and only if 1s .

Hence, by Routh-Hurwitz criterion the roots of (10) have
negative real parts and therefore, cE is locally
asymptotically stable.

V. Global analysis

In this section, we shall show that 0E is globally

asymptotically stable if only 0E exists. If 0E and cE
exist, then cE is globally asymptotically stable by showing
that the system (7) is uniformly persistence. The proof
involves the construction of a Lyapunov function and the
application of the Lyapunov-LaSalle theorem. (We shall use
Theorem 1.2 in Wolkowicz and Lu [7], which is slightly
modified version of the statement given in LaSalle [3] and
Hale [1].) The following theorem shows that 0E is a global

attractor if it is the only steady state (i.e., 1s ).

Theorem 5.1: If 1s , then the solutions of (7) satisfy
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Theorem 5.2: If 1s , then the solutions of (7) satisfy
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Proof: We choose max1 Dd  and min2 Dd  such that
for large t ,
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Define the Lyapunov function ),( psV as follows
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Then the time derivative of V along solutions of the
differential equation is
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Therefore, V is nonpositive for 10  s and equals 0
for )1,0[s if and only if ss  or 0p .

By Lemma 3.1 every bounded solution of (7) is contained in
 and hence by Theorem 1.2 in [7] every solution of (7)
approaches the set  , the largest invariant subset M of
 0:),(  Vps  .  is made up of points of the

following forms

)0,(s , where ]1,0[s

),( ps , where ),0[ p .

Since V is bounded above, any solution of the form )0,(s
can not be in the omega limit set of any solution initiating in
the interior of 2

R . Mps ),( implies that sts )( ,

which in turn leads to pfts ss )(1)(0   and

hence 1/)1( Dp s . Therefore }{ cEM  . This
completes the proof.

VI. Discussion

In this paper, we considered a basic resource-based single
species chemostat model which is the modified form of the
model given in Kapur [2]. In this model, the population of
microorganism consumes the nutrient. Kapur carried out the
equilibrium analysis and extinction criteria for monotone
response function and presented graphical results for Monod
type response function. We assumed that the functional
response is general monotone function. For this response
function we proved the positivity and boundedness of
solutions of our model. We also studied the local stability of
steady states by using the Routh-Hurwitz criterion and
global stability of the steady states by using the method of
Lyapunov functionals.

The model (7) has two steady states. One is associated with
extinction, the other with survival. We found that the
washout steady state 0E is the global attractor if it is the
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only steady state (this happens when 1s ). This confirms

that the system is not persistent. When 0E and cE both

exist, we found that 0E is unstable and cE is locally
asymptotically stable. By constructing a Lyapunov function,
we were able to show that cE is a global attractor and that
the system is uniformly persistent. Based on our simulation
work we assume the functional response function takes the
Moser form:

nn

n

sa
mssf


)(

where m is the maximal growth rate and a is the half
saturation constant and Nn .

The numerical experiments performed on the system (7)
using experimental data confirm our theoretical findings.
Figures 1-2 show the solution trajectories as a function of
time, where the parameters are set so that the steady states

0E and cE are stable for all Nn . Figure 3 deals with a
different case. This Shows that the solution trajectories tend
to 0E for 1n and tend to cE for 2n respectively.

The initial value )6.0,8.0())0(),0(( ps was taken for
the graphs in figures 1-3.

Figures 4-5 contain the trajectories of the system (7)
initiating in the nonnegative cone of the ),( ps -plane. The

two plots in figure-4 have 1s and the extinction steady

state is stable. All plotted trajectories tend to 0E , extinction

of the species. The two plots in figure-5 have 1s and all

plotted trajectories tend to cE , resulting in a stable survival
steady state. Therefore, we now can conclude that the
extinction and survival of population of microorganism
depend on the break-even concentration, s .
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Fig. 1. Solution trajectories as function of time, tending to the
stable steady state 0E .

20 40 60 80 100 120 140

0.2
0.4
0.6
0.8
1

1.2

pHtLsHtL
Graphs

1.,1,2.,75.1 1  nDam

20 40 60 80 100 120 140

0.2
0.4
0.6
0.8
1

1.2

pHtLsHtL
Graphs

1.,1,2.,25.1 1  nDam

20 40 60 80 100 120 140

0.2
0.4
0.6
0.8
1

1.2

pHtLsHtL
Graphs

2.,1,2.,25.1 1  nDam



Asymptotic Behavior of Single Species Chemostat Model 131

20 40 60 80 100 120 140

0.2
0.4
0.6
0.8
1

1.2

pHtLsHtL
Graphs

25.,1,2.,25.1 1  nDam
Fig. 2. Solution trajectories as function of time, tending to
the stable steady state cE .
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Fig. 3. Solution trajectories as function of time, tend to 0E
for 1n and tend to cE for 2n .
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