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Abstract

We use a pair of coupled continuum equations to generate a rough surface which models molecular beam
epitaxy. Using these equations, we generate a rough Fe surface on Ag substrate. We use Recursion method
coupled with TBLMTO method for the density of states of different point on the rough surface. Then we
use Burke orbital peeling method for the binding energy of Fe atoms on the different points of rough
surface.

1. Introduction

Magnetic and non-magnetic overlayers prepared by various
vapour deposition techniques on substrates invariably lead
to the formation of rough surfaces. Considerable work has
gone into the description and quantification of surface
roughness [1]. Experimentally one can access such
descriptions, for example, through glancing angle X-ray
scattering experiments [2,3,4,5,6,7]. We observe earlier that
[9] the local magnetic moment in a solid is strongly
influenced by the immediate environment, so it  vary
randomly across the rough surface. Atomic binding energy
of systems occur due to the collective behaviour of
interacting itinerant electrons.

The study of the effect of extended defects like surfaces and
interfaces on itinerant electron binding energy takes us a
step further.   The surface co-ordination number of a atom
differs quite a bit as compared with that of the  bulk solids
[9]. When a surface is formed, the environment of the atoms
at the surface is different from the bulk. Atoms at the
surface have fewer neighbours as compared to the bulk and
consequently their bonding to the solid is weaker.

We shall generate a rough surface and then obtain the local
density of states at various positions on the surface using a
local spin density approximation based electronic structure
technique and hence the binding energy using Burke orbital
peeling method [10]. The exact method for generating the
rough surface is not material to our results, except for the
fact that it will fix the degree of roughness of the resulting
profile. We have chosen the coupled stochastic equations
model suggestedby [11] and in a modified form by [12],
since  we have some understandingof  the  roughness
produced [11]. Moreover, the model has, we believe, built in
it many of the physical mechanisms involved in the
deposition process. These include:

i) a randomly fluctuating incoming flux,

ii) a shape rearrangement to minimize the chemical potential
which leads to a surface diffusive current proportional to the
gradient of the local chemical potential and

iii) an evaporation-accretion process arising out of finite
substrate temperatures.

Our proposal for the study of surface magnetization
roughness will not change qualitatively if we use any other
model for generating the rough surface. For the electronic
structure technique we have used the tight-binding
linearized muffin-tin orbitals method proposed by Andersen
[13,14]coupled with the recursion method of [15,16].

Both these methods have been described in great detail in
the referenced papers. We shall indicate here the main
results we have used for our analysis. The ``second order"
Hamiltonian generated self-consistently within the TB-
LMTO has the form,
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 R labels the position of a given atom and i indicates
which layer below the surface R sites. L =l,m are
composite angular momentum indeces,  is the
spin index (either  or  ).

 C, o,  are the potential parameters of the TB-
LMTO method.

 SRLR’L” is the short-ranged screened structure
matrix, which depends only on the geometry of the
underlying lattice. This may be different at the
surface because of surface dilatation.

 PRL and TRLR’L’ are the projection and transfer
operators in Hilbert space H spanned by tight-
binding basis {|RL>}

Using this Hamiltonian, the recursion method provides the
Green functions :
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T(E) is the appropriate terminator obtained from the initial
part of the continued fraction. The terminator preserves the
herglotz analytic properties of the approximated Green
function. The imaginary part of the Green function gives us
density of states.

1.1 Orbital peeling method [10]

If we have two systems one consists of an adatom and the
surface and the second system is the surface without the
adatom. If the hamiltonian for the first system is H0 and the
second is H1. The density of states of two systems are
respectively,

 

 

0 0

1 1

1 Im

1 Im

N Tr E i H

N Tr E i H







   

   

where the limit as  tends to zero is implied.

The structural energy of these systems are,
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The interaction energy is given by,
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where N=N1-N0. Using the matrix identity
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Now the first (-1) rows and columns of the matrix [ E-H1,0]
are deleted to get the peeled green function and after a little
bit of mathematics, we find the energy difference

2 ( )i i p z F
i i

W z p N N E 
    
 
 

where Np and NZ are the number of poles and zeroes
respectively.

II. The Input Parameters

The potential parameters used in equation .1 are layer
dependent and different from those of the bulk. To get the

starting potential parameters we did a super-cell
calculations.We used a unit cell of tetragonalstructure of 12-
30 atomic spheres

The empty spheres containing the charge but no atoms take
care of the charge leakage. We take a unit cell by varying
the number of layers for Fe and empty spheres. Using this
parameters we did a recursion calculation and we observe
that density of states obtained in different layers of (100)
plane  match very well with the result obtained from the
LMTO (in Fig. 1).

III. Rough Surface Formation

We should reiterate at the outset that the procedure for the
generation of a rough surface profile is immaterial to the
analysis of local magnetic moment distribution on a rough
surface. However, for the analysis of the nature of
roughness in the moment distribution and its correlation
with the roughness in the profile requires us to choose a
particular generation procedure which is such that we have
knowledge about the nature of its resulting surface profile.
We shall choose here the coupled stochastic equations
similar to those proposed by Sanyal [11], modified later by
[12]. The coupled equations have been discussed quite
extensively in the referenced articles and the reader is
referred to them for details.

Figure. 4 displays the rough surface produced using the
coupled equations. We should note that, on the rough
surface, translational symmetry is lost both perpendicular
and along the surface. The roughness of such surfaces have
been traditionally measured by the scaling exponent
$\alpha$ of the height-height two-point correlation function
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The height-height correlation function for the rough surface
is presented in Fig. 3.

IV. Computation Details and Results

We have used a real space cluster of 6402-11011 atoms
(depending on the position of the starting site on the surface
of 50 X 50 atoms) which remain within the 16th shell from
the starting site. We generated 30 pairs of recursion
coefficients accurately. We perform our calculation  in
around 350 points on the rough surface to determine the
energy required to knock off an atom from the surface. We
have also calculated the curvature of that corresponding
points. The result of our calculation is given in the fig. 5.
We observe that the energy required to knock off an atom is
higher in positive curvature or groove than that of negative
curvature or mounds. This was exactly what we mentioned
in coupled continuum equation.

Fig. 5 and the negative slope of the regression line  clearly
show that the binding energy is higher in the area of positive
curvature or in the groove and it is lower in the area of
negative curvature or mounds. It is expected because the
surface atom at the mound has less coordination number
than that of the groove.
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Fig. 1. A Pictorial Description of the model.

Fig. 2. The layer resolved density of states of a bulk Fe [top-left,
surface layer [top-right], sub-surface S-1  [bottom-left] and sub-
surface S-2 [bottom-right] on a [100] plane. Both the K-space and
recursion method is used. The vertical line shows the bulk Fe
Fermi energy

Fig. 3. A part of the rough surface produced using coupled
equations of [20].

Fig. 4. Height-height correlation function C(r) plotted against r. Using
the equation  

1/22
( ) iC r h h  . As ( )C r r , we obtain =0.68.

Fig. 5. The energy required to Knock off atoms-curvature scatter
diagram and its regression curve. The regression line is E=2.5623+
0.086331 C.
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