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I. Introduction
Eigenvalue analysis is one of the most important and
fundamental tools for wave and vibration, and has been
treated by the finite element method (FEM) [1 – 6], by the
boundary element method (BEM) [7, 8], and also by the
integral equation [9]. In this paper we study the Helmholtz
equation which governs the time-harmonic wave problem

0)( 22  uk , since  /2k , where k is the wave
number and  is the wave length, and u is the field of
interest which could be wave elevation, pressure, or an
electro-magnetic potential, among many other possibilities
[3]. Recently the same problem was considered by the
method of the special integration scheme [3, 4] and the
theory of integrations of the element matrices for
rectangular, triangular and special quadrilateral finite
elements for very short waves, and they used Maple and
FORTRAN codes for the evaluation of integration abscissas
and weights. Ortiz and Sanchez [5] also developed an
analytical integration procedure for their triangular
elements. They applied local co-ordinate rotation to the
integrand so that the oscillatory component is transformed
into the form depending only on one ‘effective’ direction
with an ‘equivalent’ wave number. This simplifies the
integration procedure and reduces the number operations.
Hacker and Schreyer [6] studied exact analytical
expressions for the eigenvalues only for four node
rectangular elements. The quadrilateral element is more
complicated to deal with than rectangular or triangular
element due to the  term in the Jacobian. Thus the
objective of this study is to evaluate the eigenvalue analysis
for general quadrilateral elements and finally a comparison
is made with the exact solutions.

II. FE Formulation of Helmholtz Equation
The partial differential equation (PDE) governing transient
heat transfer on a 2-D region Ω
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and the initial conditions (i.e. at t = 0) are of the form

),()0,,( 0 yxuyxu  in Ω (1c)

Here t denotes the time and 2211,, aac , 00 ,ua , f , nqu ˆ,ˆ are
given as functions of position and/or time.
The corresponding homogeneous boundary value problem is
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Solution of equation (2) is known generally to behave
according to
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which reduces equation (2) as
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where 0ac   and the b.c. (2b) reduces to

0/,0   (4b)

The ’s and ’s satisfying eqs. (4) are known as
eigenvalues and eigenfunctions, respectively. The
differential equation (4), which represents the time-
independent form of original equation, results from
applying the technique of separation of variables to reduce
the complexity of the analysis, is known as the Helmholtz
equation.
The weak form of (1) over an element [e] is obtained by
substituting a finite element approximation for the
dependent variable u as
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where ju denotes the  value of ),,( tyxu at the spatial

location ),( jj yx at time t.

The i-th element equation (in time) of the finite element
model is
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or in matrix form,
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where a superposed dot on u denotes the time derivative
( dtduu / ) and
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The matrices e
jiK and e

jiM are known as element matrix
and mass matrix, respectively.

Substituting )exp()( tutu j
e
j  in (7) to obtain,

}0{}){][][(  UKM ee (9)

Assembling the element equations (9), we have

}0{}){][]([  UMK  (10)

Short communication



Akther et.al142

A non-trivial solution to equation (10) exists only
if 0][][  MK  , which when expanded results in an n-th
degree polynomial in  , where n is the number of nodes at
which the solution is not known. The n roots, j , j = 1, …,
n of this polynomial gives the first n eigenvalues of the
increased system.

III. Numerical Example
For the well-known transient heat conduction equation, the
following PDE is considered [1],
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in a square region }10,10:),{(  yxyxD ,
subject to the boundary conditions for t > 0, shown in Fig. 1.

0),,0( 

 ty

t
u , 0),0,( 


 tx

y
u ,

0),1,( txu , 0),,1( tyu

and the initial condition
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The homogeneous form of (11) is,
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with boundary conditions,
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The exact solution of (12) is
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where  is the required eigenvalue and the nontrivial
),( yxU is the corresponding eigenfunction. The exact [1]

eigenvalue  is 4/)( 222
, nmnm  , m, n = 1, 3, 5, …  .

Now we evaluate the approximate eigenvalues using the
mesh of quadrilateral elements, shown in Fig. 2.

Fig. 2. Different Mesh of the domain of the problem.

The eigenvalues are calculated using the present formulation
and compared to the exact solutions. The errors (%) are
shown in Table 1.

Table. 1. Errors (%) analysis for the meshes in Fig.2.

Mesh1 Mesh 2 Mesh 3 Exact
Q4 Q8 Q9 Q4 Q8 Q9 Q4 Q8 Q9
21.59 1.1 0.75 5.24 0.05 0.28 4.53 27.54 16.15 04.935
-- 40.5 40.5 38.95 3.1 2.89 36.67 1.64 1.63 24.674
-- 44.6 40.5 38.95 3.1 3.61 2.11 16.35 13.36 24.674
-- -- -- -- 8.29 3.05 -- 13.83 12.44 44.413
-- -- 0.32 1.21 -- -- 11.01 -- -- 64.152
-- -- -- -- 5.07 5.97 -- 1.98 3.14 83.892
-- -- -- -- 5.07 5.05 -- 2.76 2.33 83.892
-- -- -- -- 18.93 18.97 -- -- 21.01 123.370
-- -- -- -- 6.54 18.34 -- -- -- 123.370
-- -- -- -- -- 7.18 -- 8.81 -- 143.109
-- -- -- -- -- -- 9.12 -- 143.109
-- -- -- -- 0.57 1.87 -- 0.83 0.81 202.327
-- -- -- -- 0.44 0.47 -- 1.16 -- 202.327
-- -- -- -- 3.74 1.30 -- -- -- 222.066
-- -- -- -- 3.74 0.13 -- -- 9.57 222.066
-- -- -- -- -- -- -- 1.54 1.56 261.544
-- -- -- -- -- 5.16 -- -- 1.56 261.544
-- -- -- -- -- 7.32 -- -- 1.56 261.544
-- -- -- -- -- -- -- -- 0.09 301.023
-- -- -- -- -- 3.98 -- -- 5.49 419.458

IV. Conclusions
In this paper the eigenvalue analysis of Helmholtz equation
using FEM over quadrilateral element is studied. Two types
of finite elements, such as regular and distorted
quadrilateral, are discussed. All integrals of the element
matrices and mass matrices are evaluated analytically using
MATHEMATICA. We observe that regular Q8 elements give
better results than those of distorted quadrilateral elements
for small eigenvalues. On the other hand, for largest
eigenvalues, Q9 elements may be recommended to get the
results with high accuracy.
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