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Abstract 
For the reason of simplicity the Lee and Carter (LC) method is getting widely adopted for long-run forecasts of age specific mortality rates. In 
this paper the LC model is applied to French mortality data to demonstrate the mortality results. The age-specific death rates are used for the 
period 1816 to 2006. The index of the level of mortality, and the shape and sensitivity coefficients for each age are obtained through the LC 
method. The autoregressive moving average and the singular value decomposition models are used to forecast the general index for a long 
period of time that goes from 2007 to 2056. The projection is useful since the projected mortality rates can be used to project life expectancy at 
birth which is the widely used social indicator in demography. 
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I. Introduction  

A parametric curve is usually fitted to annual mortality rates 
for any country's data and then simple graduation techniques 
is applied to obtain projected rates. The attempt to find such 
appropriate mortality curve has a long history in demography 
and actuarial sciences. Many researchers proposed many 
studies. Over the past few decades, a number of new 
approaches have been developed for forecasting mortality 
using stochastic models, such as Alho2, 3, Barinaga4, Delwarde 
et al.7. Booth et al.,5 provide overviews of the development 
and current state of stochastic mortality modelling. Models 
can be classified by the number of random period or cohort 
effects used to describe their dynamics or by whether they are 
formulated in discrete or continuous time. 

However, studies conducted in the last twenty years 
revealed many errors in the forecasts. Keilman16 reported 
that the earlier forecasts have missed some important events 
such as the post second World War baby-boom and the 
decline in fertility in Greece and Spain after 1985. Old-age 
mortality decline was also underestimated and increases in 
life expectancy under-projected. Recently, the LC model has 
been more and more popular and has been applied for long-
run forecasting the age specific mortality rates for many 
countries. This model is computationally simple to apply. It 
provides successful results for various countries for many 
years, for instance, U.S. (Lee and Carter18), Canada (Lee 
and Nault20), Chile (Lee and Rofman16), Japan (Wilmoth27). 
In contrast, the model did not succeed for some developed 
country's data, for example, Australian data (Booth et al.5) 
and United Kingdom (Renshaw and Haberman22). French 
data has also been used for mortality projection in some 
studies. The LC model is used in many other studies (Koissi 
et al.17, Renshaw and Haberman23, Wang and Liu25, 
Haberman and Renshaw11,12, Lee and Miller19). 

Variations of the LC model have been used to forecast 
fertility rates and migration flows (Hrdle and Mykov10, 
Hyndman and Ullah15). Other applications of the LC method 
involve population forecasts (Hollmann et al.14), the 
assessment of longevity risk in life insurance contracts 

(Antolin1, Brouhns et al.6, Dowd et al.8). Two frameworks 
for incorporating the effects of external factors into the 
stochastic modelling of age-specific mortality rates have 
been proposed recently, both following the Bayesian 
paradigm. Girosi and King9 develop a Bayesian hierarchical 
model for forecasting different demographic variables that 
includes additional explanatory variables as proxies for 
systematic causes. They illustrate their method by studying, 
for example, mortality from transportation accidents in 
Argentina and Chile using GDP as a proxy for the level of 
infrastructure and effort invested in transportation safety. 
Reichmuth and Sarferaz24 propose a Bayesian vector 
autoregressive model that allows studying the short-run 
interaction between a latent mortality variable and several 
covariates. 

The LC model is useful in many ways. The model 
represents one of the most influential recent developments 
in the field of mortality forecasts in recent years. The 
important feature of this model is that for a precise value of 
the time index say ݇௧, we can define a complete set of death 
probabilities that allow to calculate the life table. The main 
component of LC model is the age-specific death rate that is 
the ratio of the number of deaths within a specified age 
group in a given geographic area during a certain period of 
time to the corresponding population at risk of the same age 
group, in the same geographic area during a specified time 
period of study. In this paper, we focus on projecting 
mortality rates for a long-term for French population data. 
We also aim at giving an overview of the LC model through 
describing the basic method and evaluating the performance 
of the method. In addition, we will study how a forecaster 
could get a better performance of the model by selection of 
an optimal time period to fit the model. 

II. Data and Methodology 

The data source used for the study is based on human 
mortality database (HMD) (www.mortality.org). The HMD 
started their journey in 2002. The database provides detailed 
mortality and population data to researchers, students, 
journalists, policy analysts, and others interested in the 
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history of human longevity and this database is free of 
charge. Currently, it contains detailed data for a collection 
of 28 countries. The information in the HMD is standardized 
and includes several features of population data-live birth 
counts, death counts, population size on January 1st, 
population exposed to risk of death, death rates (period and 
cohort), and life tables (period and cohort). All HMD data 
files are organized by sex, age and time. Population size is 
given for one-year and five-year age groups. 

In 1992, based on a combination of statistical time series 
methods, Lee and Carter developed a new model known as 
Lee-Carter (LC) model for the extrapolation of trends and 
age patterns in mortality. By using age-specific death rates, 
LC estimates an index of the level of mortality called ݇. 
Such estimation is calculated for men, women, and the total 
population. ARIMA and state-space time series models are 
used to forecast each index. Both models are compared as 
regards their goodness of fit and predictive capacity. Once 
the index of the level of mortality is forecasted, it is possible 
to predict death rates and life expectancy. 

The LC methodology for forecasting mortality rates is a 
simple bilinear model in the variables x (age) and t (calendar 
year). The model is defined as: 

                ln൫݉௫,௧൯ = ܽ௫ + ܾ௫݇௧ + ߳௫,௧                                 (1) 

where ݉௫,௧  is the observed central death rate at age ݔ in year 
 ௫ is the average age-specific pattern of mortality, ݇௧ is aܽ ,ݐ
time trend index of general mortality level, ܾ௫ is the pattern 
of deviations from the age of profile as the ݇௧ varies, and 
߳௫,௧  is the residual term at age ݔ and time ݐ. 

The time component captures the main time trend on the 
logarithmic scale in mortality rates at all ages. The model 
includes no assumption about the nature of the trend in. The 
age component modifies the main time trend according to 
whether change at a particular age is faster or slower than 
the main trend. In principle, not all the need have the same 
sign, in which case movement in opposite directions could 
occur. In practice, all they do have the same sign, at least 
when the model is fit over fairly long periods. The model 
assumes that is invariant over time. The key driver of 
mortality dynamics in the LC model is the index of the level 
of mortality݇௧, which can be filtered from the matrix of age-
specific mortality rates with singular value decomposition. 
This variable is characterized as the dominant temporal 
pattern in the decline of mortality (Tuljapurkar et al.26), as a 
random period effect, or simply as a latent variable. 

In order to obtain a unique solution for the system of 
equations of the model, is set equal to the averages over 
time, the square values of sum to unity, and values sum to 
zero, these are of the forms: 

ܽ௫ = ଵ
்

∑ ln൫݉௫,௧൯௫ , ∑ ܾ௫
ଶ

௫ = 1, ܽ݊݀  ∑ ݇௧௧ = 0. 

The parameters of the model (1) can be estimated with 
different methods such as the singular value decomposition 
(SVD), the maximum likelihood and the weighted least 
square. In this paper we used the SVD method for parameter 
estimation because of the computational simplicity of the 
SVD method. 

The SVD Method 

The LC model cannot be fitted by ordinary regression 
methods, because there are no given regressors. Hence in 
order to find a least squares solution to the Equation (1) we 
use a close approximation, suggested by Lee and Carter18, to 
the singular value decomposition method, assuming that the 
errors are homoscedastic. The parameter vector ܽ௫ can be 
easily computed as the average over time of the logarithm of 
the central death rates. Then we apply the SVD to matrix 
ܼ௫,௧ = ln൫݉௫,௧൯ − ොܽ௫, producing the matrices ܷܸܮᇱ =
൫ܼ௫,௧൯ܦܸܵ = ଵܮ ௫ܷଵ ௧ܸଵ + ⋯ + ௫ܮ ௫ܷ ௧ܸ. Approximation to 
the first term gives the estimates ܾ௫ = ܷଵ and ݇௧ = ଵܮ ௧ܸଵ. 
The whole application of the SVD method is relative simple. 
Here an approximate a new matrix መܼ௫,௧  is obtained by the 
product of the estimated parameters ܾ௫ and ݇௧. That is, 
መܼ௫ଵ,௧ଵ = ܾ௫ଵ ݇௧ଵ. In matrix format, 

                መܼ௫,௧ =

⎣
⎢
⎢
⎡

መܼ௫ଵ,௧ଵ መܼ௫ଵ,௧ଶ ⋯ መܼ௫ଵ,௧
መܼ௫ଶ,௧ଵ መܼ௫ଶ,௧ଶ ⋯ መܼ௫ଶ,௧

⋯ ⋯ ⋯ ⋯
መܼ௫,௧ଵ መܼ௫,௧ଶ ⋯ መܼ௫,௧⎦

⎥
⎥
⎤

ܾ௫. 

III. Data Analysis 

We implement the LC model to age-specific mortality rates 
of France for the period 1816-2006 for ages that range from 
0 to 110 years. The Singular Value Decomposition method 
gives the estimated values for logarithm of model 
components ොܽ௫, ܾ௫ and ݇௧. One good property of the LC 
approach is that, once the data are fitted to the model and 
the values of the vectors ܽ௫, ܾ௫ and k are found, only the 
mortality index ݇௧ needs to be predicted. The estimates ොܽ௫, 
and ܾ௫ are presented in Table 1 (see in appendix) and the 
estimate ݇௧ is presented in Table 2 (see in appendix). The 
estimates are also plotted in Fig. 1. To study the efficiency 
of the LC model, the residual term on a logarithmic scale 
has been examined as well. The cohort effect does not 
appear very significant, and most of the residual terms show 
a similar lack of systematic pattern. 

The age specific death rates ܽ௫ appear to be higher at ages 0 
and 1 (Fig. 1). Then they decline until the age 20 and after 
age 20, the mortality rates again increase and that are 
continued to be higher until the year 100. The parameter, k 
declines at about the same pace during the second half. It 
also strikes that short run fluctuations in k do not appear 
much greater in the first part of the period than they do in 
the second, with the expectation of male in the first years. 
We can find that these results are consistent with the 
findings of LC18 in their analysis of the total French 
population. Both these features of k (it linearly declines with 
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Table 1. The estimates of Lee Carter model components, ࢞ࢇ and ࢞࢈. 

Age ොܽ௫ ܾ௫ Age ොܽ௫ ܾ௫ Age ොܽ௫ ܾ௫ Age ොܽ௫ ܾ௫ 
0 -2.62 0.02 25 -5.37 0.02 50 -4.49 0.01 75 -2.53 0.01 
1 -4.38 0.03 26 -5.38 0.01 51 -4.43 0.01 76 -2.45 0.01 
2 -4.96 0.03 27 -5.39 0.01 52 -4.37 0.01 77 -2.36 0.01 
3 -5.34 0.03 28 -5.39 0.01 53 -4.31 0.01 78 -2.27 0.01 

4 -5.62 0.02 29 -5.37 0.01 54 -4.25 0.01 79 -2.17 0.01 
5 -5.82 0.02 30 -5.35 0.01 55 -4.20 0.01 80 -2.07 0.01 
6 -6.00 0.02 31 -5.34 0.01 56 -4.14 0.01 81 -1.98 0.01 

7 -6.17 0.02 32 -5.31 0.01 57 -4.07 0.01 82 -1.87 0.00 
8 -6.30 0.02 33 -5.28 0.01 58 -3.99 0.01 83 -1.78 0.00 
9 -6.41 0.02 34 -5.25 0.01 59 -3.91 0.01 84 -1.69 0.00 

10 -6.47 0.02 35 -5.22 0.01 60 -3.82 0.01 85 -1.61 0.00 
11 -6.49 0.02 36 -5.19 0.01 61 -3.74 0.01 86 -1.54 0.00 
12 -6.46 0.02 37 -5.15 0.01 62 -3.66 0.01 87 -1.47 0.00 

13 -6.41 0.02 38 -5.11 0.01 63 -3.58 0.01 88 -1.41 0.00 
14 -6.27 0.02 39 -5.07 0.01 64 -3.51 0.01 89 -1.35 0.00 
15 -6.12 0.02 40 -5.01 0.01 65 -3.43 0.01 90 -1.28 0.00 

16 -5.97 0.02 41 -4.98 0.01 66 -3.36 0.01 91 -1.21 0.00 
17 -5.82 0.01 42 -4.92 0.01 67 -3.28 0.01 92 -1.15 0.00 
18 -5.64 0.01 43 -4.88 0.01 68 -3.19 0.01 93 -1.09 0.00 
19 -5.53 0.01 44 -4.83 0.01 69 -3.09 0.01 94 -1.04 0.00 
20 -5.45 0.02 45 -4.78 0.01 70 -2.99 0.01 95 -0.96 0.00 
21 -5.39 0.02 46 -4.73 0.01 71 -2.90 0.01 96 -0.89 0.00 
22 -5.36 0.02 47 -4.68 0.01 72 -2.80 0.01 97 -0.81 0.00 

23 -5.35 0.02 48 -4.62 0.01 73 -2.71 0.01 98 -0.73 0.00 
24 -5.36 0.02 49 -4.56 0.01 74 -2.62 0.01 99 -0.64 0.00 
         100 -0.54 0.00 

Table 2. The estimates of Lee Carter model component ࢚. 
Year ݇௧ Year ݇௧ Year ݇௧ Year ݇௧ Year ݇௧ 

0 57.84 46 51.41 92 33.59 138 -47.15 184 -154.97 
1 59.91 47 53.79 93 31.53 139 -48.83 185 -157.49 
2 61.39 48 53.15 94 27.38 140 -49.01 186 -160.33 

3 64.36 49 57.67 95 36.87 141 -51.93 187 -160.38 
4 59.79 50 53.56 96 26.64 142 -60.66 188 -174.61 
5 58.35 51 52.30 97 27.45 143 -60.99 189 -174.23 
6 61.95 52 57.46 98 62.21 144 -62.61 190 -180.90 

7 57.99 53 55.23 99 66.69 145 -67.12   
8 59.97 54 66.39 100 57.44 146 -63.39   

9 61.44 55 81.38 101 50.39 147 -62.21   
10 63.24 56 51.52 102 69.89 148 -69.73   
11 59.49 57 53.67 103 38.37 149 -68.33   

12 63.71 58 47.24 104 26.77 150 -71.64   
13 59.39 59 50.26 105 23.31 151 -71.55   

14 58.94 60 49.28 106 15.87 152 -71.42   
15 58.69 61 47.29 107 16.78 153 -69.13   

16 67.65 62 49.79 108 14.62 154 -76.57   
17 60.71 63 48.16 109 17.66 155 -76.31   

18 69.44 64 51.36 110 18.88 156 -78.44   
19 59.20 65 49.34 111 12.74 157 -79.78   
20 53.18 66 50.38 112 14.03 158 -82.81   
21 59.43 67 50.06 113 18.01 159 -83.61   
22 59.56 68 52.01 114 8.74 160 -85.8   
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23 55.75 69 48.29 115 8.53 161 -91.41   
24 57.05 70 50.33 116 7.30 162 -92.54   

25 56.32 71 48.83 117 5.60 163 -95.34   
26 57.98 72 47.85 118 3.03 164 -96.39   

27 56.14 73 44.12 119 3.14 165 -98.02   
28 52.34 74 49.77 120 1.18 166 -101.84   
29 49.11 75 47.85 121 -0.28 167 -101.54   

30 56.37 76 49.29 122 0.51 168 -106.69   
31 56.96 77 49.28 123 -2.14 169 -107.58   
32 57.26 78 44.23 124 32.76 170 -110.56   
33 67.46 79 45.09 125 5.61 171 -117.03   

34 49.87 80 38.66 126 6.56 172 -119.96   
35 53.66 81 37.63 127 20.99 173 -121.71   

36 54.78 82 42.96 128 39.46 174 -125.25   
37 51.78 83 45.03 129 15.57 175 -127.44   
38 66.98 84 45.41 130 -14.47 176 -130.97   

39 63.77 85 40.21 131 -22.35 177 -131.66   
40 57.59 86 37.36 132 -32.46 178 -137.12   

41 59.02 87 36.17 133 -27.41 179 -138.43   
42 58.75 88 37.14 134 -35.81 180 -141.03   

43 68.92 89 36.38 135 -34.22 181 -145.98   
44 49.78 90 38.13 136 -42.02 182 -148.30   

45 56.96 91 36.56 137 -41.54 183 -150.66   

 

 
Fig 1. Graph of main and interaction effect and value of ݇௧ of 
overall years. 
 

relatively constant variance) are very convenient for 
forecasting purpose. We can see from Fig. 2 that, the 
mortality pattern (log-mortality rates) is almost same in the 
year 1899, 1957, 1977 and 1997. Different scenario is seen 
in the year 1918 when there was running the 1st world war 
and also there were some epic broken like influenza, cholera 
etc. In both curves of Fig. 2 it shows that between the ages 
20 to 40 the effect of mortality increases because of the First 
World War. After age 40 the mortality rates decrease with 
almost constant rates. 

Forecasted mortality index are used to compute forecasted 
death rates using 
 

݈݊൫݉௫,ଶା௧൯ ≈ ොܽ௫ + ܾ௫ ݇ଶା௧. 
 
Fig. 3 (top panel) shows the fitted and forecasted mortality 
rates in log scale for future 50 years, obtained with the LC 
method. Fig. 3 (bottom panel) gives also the long-term 
forecasting scenario up to year 2056 using the random walk 
with drift where the drift is zero. 

 
2(a) 
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2(b) 

Fig 2. Male (top panel) and female (bottom panel) death rates for 
several years. 

 
3(a) 

 
3(b) 

Fig 3. Total death pattern forecast of 2007 to 2056 (top panel) and 
forecasted death rates with random walk with drift zero (bottom 
panel). 

IV. Conclusions 

This paper presented an application of the model 
underpinning the Lee-Carter methodology for forecasting 
vital rates. To understand how the Lee-Carter model is 
efficient, the residual term on a logarithmic scale was 
examined and found no lake of goodness of fit.  In particular 
we focused on forecasting mortality rates on a period basis. 
Interesting results are found. There a priori assumption 
would be that the mortality rates would be different, and this 
is what we found in our analysis. The efficiency of the Lee-
Carter method was examined with implementing the 
singular valued decomposition to the underlying mortality 
rates. The results showed that under an easy and popular 
estimation period, the model fit the observed death rates 
quite well with the singular valued decomposition. The 
estimates for the age parameters a and b are almost alike, 
while there is some variation in the estimates of the time-
dependent mortality index k. This methodology could 
further easily be used to Bangladeshi data if there was 
availability of data for many years.  
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